Биологические механизмы половой дифференциации. Биологические основы пола Аномалии количества и структуры яичек

Ожирение по женскому типу (гиноидное) встречается у мужчин реже, чем абдоминальное. Тем не менее, уровень людей с таким типом лишнего веса, неуклонно растет. Ожирение по женскому типу возникает, в основном из-за гормонального сбоя. При этом жировые ткани появляются в области бедер, ягодиц, груди. Мужская фигура округляется, появляется сходство с женской, отсюда и название патологии. В статье подробно разберем причины заболевания, расскажем о методиках его лечения, о возможных последствиях. Вы узнаете, может ли развиться эта патология у мальчиков-подростков, посмотрите фото и видео по теме.

Почему развивается ожирение по женскому типу?

В норме у мужчин уровень андрогенов и эстрогена поддерживается на сбалансированном уровне. Преобладает тестостерон, отвечающий за формирование мускулатуры, широких плеч, узких бедер. Эстроген, хоть и присутствует в организме, но не имеет заметного влияния на формирование жировой ткани и типа фигуры.

Совсем другая картина прорисовывается, если при гормональном сбое уровень эстрогена преобладает над количеством тестостерона. В этом случае организм реагирует соответствующе, снижается потенция, откладывается жир на бедрах и ягодицах. Часто жировые ткани развиваются и в области груди. Поэтому основной причиной развития ожирения у мужчин по женскому типу медики считают нарушение в работе эндокринной системы.

Кстати, в подростковом возрасте у мальчиков происходит перестроение организма. В возрасте 10-15 лет гормональный сбой – явление нередкое, поэтому у подростков может наблюдаться гиноидное ожирение. Как правило, патология проходит с возрастом.

Другие возможные причины патологии:

  • нарушение режима питания;
  • психические расстройства;
  • малоподвижный образ жизни;
  • экологическая обстановка.

Врачи замечают, что наследственность также играет роль. Если у родителей наблюдается ожирение по женскому типу, то у ребенка вероятность появления подобной патологии возрастает.

Как определяют ожирение по женскому типу

При обращении мужчины к врачу, специалист выясняет подробности об образе жизни пациента. Нужно, не стесняясь, ответить на вопросы о качестве питания, режиме дня, приеме медикаментов. Наличие ожирения можно рассчитать по индексу массы тела. На гиноидное заболевание указывает и вид фигуры: отложение жира на бедрах и ягодицах делает фигуру похожей на грушу.

Читайте также: Индекс массы тела: таблица и расчеты

Поставить точный диагноз поможет сдача анализов на уровень тестостерона и эстрогена. Если выявится преобладание женского полового гормона – врач сможет с уверенностью сказать о развитии ожирения у мужчины или подростка по женскому типу.


На завершающем этапе обследования потребуется сделать МРТ или УЗИ внутренних органов. Это нужно, чтобы определить наличие висцерального жира на органах, его количество и степень дистрофии органов.

Имея на руках результаты анализов и обследований, врач подберет подходящее лечение.

Как лечится гиноидное ожирение у мужчин

Принципы лечения ожирения по женскому типу такие же, как и при абдоминальном виде. Независимо от причин, вызвавших патологию, борьба с ней начинается с перехода на диету. Из рациона мужчины постепенно исключаются следующие продукты:

  • жареные и жирные блюда;
  • мучные изделия;
  • сладкое и сахар;
  • чай, кофе, соки.

Взамен исключенных продуктов питания добавляются злаковые, свежие овощи и фрукты, зелень. Мясо допускается, но не более двух раз в неделю и желательно диетическое, например, крольчатина. Вместо исключенных напитков рекомендуется пить обычную воду. Объем ежедневно потребляемой жидкости не должен быть меньше двух литров.

Одновременно с переходом на лечебную диету, корректируется образ жизни. Врач рекомендует мужчине больше времени уделять пешим прогулкам, бегу, езде на велосипеде. Из упражнений подходят те, которые помогают сжигать лишний жир в проблемных частях тела. Хороший эффект дают ежедневные приседания. На этом этапе мужчине важно знать: в первую очередь сжигается висцеральный (внутренний) жир. Поэтому, если ожирение с ягодиц и бедер не уходит сразу – не отчаивайтесь.

Развитие человеческого организма начинается с самого первого дня оплодотворения яйцеклетки сперматозоидом. Стадии эмбриогенеза отсчитываются с момента начала развития клетки, которая впоследствии образует зародыш, а из него появляется полноценный эмбрион.

Развитие эмбриона полноценно начинается только со второй недели после оплодотворения, а начиная с 10-й недели в материнском организме уже осуществляется плодный период.

Первая стадия зиготы

Абсолютно все соматические клетки человеческого организма имеют в себе двойной набор хромосом, и только половые гаметы содержат в себе единичный набор. Это приводит к тому, что после оплодотворения и слияния мужской и женской половых клеток, набор хромосом восстанавливается и снова становится двойным. Образованная при этом клетка называется "зигота".

Характеристика эмбриогенеза такова, что развитие зиготы так же делится на несколько этапов. Первоначально новообразованная клетка начинает делиться на разные по размеру новые клетки, называемые морулами. Межклеточная жидкость также распределяется неодинаково. Особенностью данной стадии эмбриогенеза является то, что образованные в результате деления морулы не растут в размерах, а лишь увеличиваются в количестве.

Второй этап

Когда деление клеток заканчивается из них образуется бластула. Она представляет собой однослойный зародыш размером с яйцеклетку. Бластула уже несет в себе всю необходимую ДНК-информацию и содержит неодинакового размера клетки. Происходит это уже на 7-й день после оплодотворения.

После этого однослойный зародыш проходит через стадию гаструляции, которая представляет собой передвижение имеющихся клеток в несколько зародышевых листов - слоев. Сначала их образуется 2, а потом между ними появляется третий. В этот период у бластулы образуется новая полость, называемая первичный рот. Имеющаяся ранее полость полностью исчезает. Гаструляция дает возможность будущему эмбриону четко распределить клетки для дальнейшего формирования всех органов и систем.

Из первого образовавшегося внешнего слоя в будущем формируются все кожные покровы, соединительные ткани и нервная система. Нижний, образовавшийся вторым, слой становится основой для образования органов дыхания, выделительной системы. Последний, средний клеточный слой представляет собой основу для скелета, кровеносной системы, мышц и других внутренних органов.

Называются слои в научной среде соответственно:

  • эктодерма;
  • энтодерма;
  • мезодерма.

Третья стадия

После того как все перечисленные этапы эмбриогенеза пройдены, зародыш начинает расти в размерах. За короткое время он начинает представлять собой цилиндрический организм с четким распределением на головной и хвостовой концы. Рост готового зародыша продолжается до 20 дня после оплодотворения. В это время образованная ранее из клеток пластина, предшественница нервной системы, преобразуется в трубку, в дальнейшем представляющую спинной мозг. От нее постепенно отрастают и другие нервные окончания, заполняющие весь зародыш. Изначально отростки делятся на спинной отдел и брюшной. Так же в это время клетки распределяются и на дальнейшее деление между мышечными тканями, кожными покровами и внутренними органами, которые образуются из всех клеточных слоев.

Внезародышевое развитие

Все начальные этапы эмбриогенеза проходят параллельно развитию внезародышевых частей, которые в дальнейшем будут обеспечивать эмбриону и плоду питание и поддерживать жизнедеятельность.

Когда зародыш уже полностью сформировался и вышел из труб, осуществляется прикрепление эмбриона к матке. Этот процесс очень важен, поскольку от правильного развития плаценты зависит жизнедеятельность плода в дальнейшем. Именно на этом этапе осуществляется перенос эмбрионов при ЭКО.

Начинается процесс с образования вокруг зародыша узелка, который представляет собой двойной слой клеток:

  • эмбриопласт;
  • трофобласт.

Последний является внешней оболочкой, поэтому отвечает за эффективность прикрепления зародыша к стенкам матки. С его помощью эмбрион проникает в слизистые оболочки женского органа, вживляясь прямо в их толщу. Только надежное прикрепление эмбриона к матке дает начало следующему этапу развития - образованию детского места. Развитие плаценты осуществляется параллельно с его разделением от помета. Процесс обеспечивается наличием туловищной складки, которая как бы отталкивает стенки от тела зародыша. На данной стадии развития эмбриона единственной связью с плацентой становится пупочный стебель, который в дальнейшем образует канатик и обеспечивает питание малыша весь оставшийся внутриутробный период его жизни.

Интересно, что ранние стадии эмбриогенеза в области пупочного стебля имеют еще и желточную протоку и желточный мешок. У неплацентарных животных, птиц и рептилий, этот мешок представляет собой желток яйца, через который эмбрион получает питательные вещества во время своего формирования. У человека же данный орган хоть и образуется, никакого влияния на дальнейшее эмбриональное развитие организма не имеет, и со временем просто редуцируется.

Пупочный канатик имеет в себе кровеносные сосуды, по которым осуществляется сообщение крови от эмбриона к плаценте и обратно. Таким образом зародыш получает от матери питательные вещества и выводит продукты обмена. Образуется эта часть связи из аллантоиса или части мочевого мешка.

Развивающийся внутри плаценты зародыш защищен двумя оболочками. В полости внутренней находится белковая жидкость, которая представляет собой водную оболочку. В ней и плавает малыш до своего рождения. Называется этот мешок амнион, а его наполнение - амниотической жидкостью. Все заключены в еще одну оболочку - хорион. Она имеет ворсинчатую поверхность и обеспечивает эмбриону дыхание и защиту.

Поэтапное рассмотрение

Чтобы более подробно разобрать эмбриогенез человека понятным для большинства языком, необходимо начать с его определения.

Итак, Данное явление представляет собой внутриутробное развитие плода со дня его оплодотворения до самого рождения. Начинается данный процесс только после прохождения 1 недели после оплодотворения, когда клетки уже закончили делиться и готовый зародыш перемещается в полость матки. Именно в это время начинается первый критический период, поскольку его имплантация должна пройти максимально комфортно и для материнского организма, и для самого эмбриона.

Осуществляется данный процесс в 2 этапа:

  • плотное прикрепление;
  • проникновение в толщу матки.

Крепиться зародыш может в любой, кроме нижней, части матки. Важно понимать, что осуществляется весь этот процесс не менее 40 часов, поскольку только постепенными действиями можно обеспечить полную безопасность и комфорт для обоих организмов. Место крепления зародыша после присоединения постепенно наполняется кровью и зарастает, после чего и начинается важнейший период развития будущего человека - эмбриональный.

Первые органы

Присоединенный к матке зародыш уже обладает органами, которые чем-то напоминают голову и хвост. Самым первым после удачного крепления эмбриона развивается защитный орган - хорион. Чтобы более точно представить, что он из себя представляет, можно провести аналогию с тонкой защитной пленкой куриного яйца, которая располагается прямо под скорлупой и отделяет ее от белка.

После этого процесса образуются органы, обеспечивающие дальнейшее питание крошки. Уже после второй недели беременности можно наблюдать появление аллантоиса, или пупочного канатика.

Третья неделя

Перенос эмбрионов в стадию плода осуществляется только по завершению его формирования, но уже на третьей неделе можно заметить появление четких очертаний будущих конечностей. Именно в этот период обосабливается тело эмбриона, становится заметной туловищная складка, выделяется голова и, самое главное, начинает биться собственное сердце будущего малыша.

Смена питания

Знаменуется данный период развития и еще одним важным этапом. Начиная с третьей недели жизни, эмбрион перестает получать питание по старой системе. Дело в том, что запасы яйцеклетки к этому моменту истощаются, и для дальнейшего развития зародышу необходимо получать нужные для дальнейшего формирования вещества уже из крови матери. К этому моменту для обеспечения эффективности всего процесса аллантоис начинает преобразовываться в пупочный канатик и плаценту. Именно эти органы все оставшееся внутриутробное время будут обеспечивать плод питанием и освобождать от продуктов жизнедеятельности.

Четвертая неделя

В это время уже можно четко определить будущие конечности и даже места глазных впадин. Внешне эмбрион меняется незначительно, поскольку основной упор развития дан на формирование внутренних органов.

Шестая неделя беременности

В это время будущей матери следует уделить особое внимание собственному здоровью, поскольку в данный период формируется вилочковая железа ее будущего малыша. Именно этот орган в дальнейшем всю жизнь будет отвечать за работоспособность иммунной системы. Очень важно понимать, что от здоровья матери будет зависеть и способность ее ребенка всю самостоятельную жизнь противостоять внешним раздражителям. Следует не только уделять внимание профилактике инфекций, но и предостеречь себя от нервных ситуаций, следить за эмоциональным состоянием и окружающей средой.

Восьмая семидневка

Только начиная с данного порога времени, будущей маме можно узнать пол ее ребенка. Исключительно на 8 неделе начинают закладываться половые признаки плода и выработка гормонов. Конечно, узнать пол можно, если ребенок сам этого захочет и на УЗИ повернется нужной стороной.

Заключительный этап

Начиная с 9-й недели заканчивается и начинается плодный. К этому моменту у здорового малыша уже должны быть сформированы все органы - им остается только расти. В это время активно набирается масса тела ребенка, увеличивается его мышечный тонус, активно развиваются органы кроветворения; плод начинает хаотично двигаться. Интересно, что мозжечок к этому моменту обычно еще не сформирован, поэтому координация движений плода происходит со временем.

Опасности во время развития

Разные стадии эмбриогенеза имеют свои слабые места. Чтобы в этом разобраться нужно более подробно их рассмотреть. Так, в одни периоды эмбриогенез человека чувствителен к инфекционным заболеваниям матери, а в другие - к химическим или радиационным волнам из внешней среды. Если в такой критический период возникнут проблемы, то вырастет риск развития у плода врожденных дефектов.

Чтобы избежать данного явления следует знать все стадии развития эмбриона и опасности каждой из них. Так, особой чувствительностью ко всем внешним и внутренним раздражителям является период бластулы. В это время погибает большая часть оплодотворенных клеток, но, поскольку проходит данный этап в первые 2 большинство женщин о нем даже не догадываются. Общее количество погибающих в это время зародышей - 40%. в данный момент очень опасен, поскольку есть риск отторжения зародыша материнским организмом. Поэтому в этот период нужно максимально беречь себя.

Перенос эмбрионов в полость матки знаменуется началом периода наибольшей ранимости эмбриона. В это время риск отторжения уже не так велик, но с 20-го по 70-й дни беременности закладываются все жизненно важные органы, при любых негативных воздействиях на материнский организм в это время вероятность развития у будущего малыша врожденных отклонений со здоровьем повышается.

Обычно к окончанию 70-го дня все органы уже сформированы, но бывают и случаи запоздалого развития. В таких ситуациях с началом плодного периода появляется опасность для этих органов. В остальном же, плод уже полностью сформирован и начинает активно увеличиваться в размерах.

Если вы хотите, чтобы ваш будущий ребенок родился без каких-либо патологий, то следите за своим здоровьем и до, и после момента зачатия. Ведите правильный образ жизни. И тогда никаких проблем возникнуть не должно.

В процессе эмбрионального развития человека сохраняются общие закономерности развития и стадии, характерные для позвоночных животных. Вместе с тем появляются особенности, отличающие развитие человека от развития других представителей позвоночных; знание этих особенностей необходимо врачу. Процесс внутриутробного развития зародыша человека продолжается в среднем 280 суток (10 лунных месяцев). Эмбриональное развитие человека можно разделить на три периода: начальный (1-я неделя развития), зародышевый (2-8-я неделя развития), плодный (с 9-й недели развития до рождения ребенка). К концу зародышевого периода заканчивается закладка основных эмбриональных зачатков тканей и органов и зародыш приобретает основные черты, характерные для человека. К 9-й неделе развития (начало 3-го месяца) длина зародыша составляет 40 мм, а масса около 5 г. В курсе эмбриологии человека, изучаемом на кафедре гистологии и эмбриологии, основное внимание уделяется особенностям половых клеток человека, оплодотворения и развития человека на ранних стадиях (начальный и зародышевый периоды), когда происходят образование зиготы, дробление, гаструляция, формирование зачатков осевых органов и зародышевых оболочек, гистогенез и органогенез, а также взаимодействия в системе мать - плод. Процессы формирования систем органов у плода подробно рассматриваются в курсе анатомии.

Прогенез

Половые клетки

Мужские половые клетки. Спермин человека образуются в течение всего активного полового периода в больших количествах. Продолжительность развития зрелых сперматозоидов из родоначальных клеток - сперматогоний - составляет около 72 дней. Подробное описание процессов сперматогенеза дается в главе XXII. Сформированный сперматозоид имеет размер около 70 мкм и состоит из головки и хвоста (см. рис. 23). В ядре сперматозоида человека содержится 23 хромосомы, одна из которых является половой (X или V), остальные-аутосомами. Среди спермиев 50% содержат Х-хромосому и 50% - У-хромосому. Показано, что масса Х-хромосомы больше массы У-хромосомы, поэтому спермии, содержащие Х-хромосому, менее подвижны, чем содержащие У-хромосому.

У человека объем эйякулята в норме составляет около 3 мл; в нем содержится в среднем 350 млн. сперматозоидов. Для обеспечения оплодотворения общее количество сперматозоидов в сперме должно быть не менее 150 млн., а концентрация их в 1 мл - не менее 60 млн. В половых путях женщины после копуляции их число уменьшается по направлению от влагалища к дистальному концу маточной трубы. Благодаря высокой подвижности сперматозоиды при оптимальных условиях могут через 30 мин - 1ч достигать полости матки, а через 1 1 / 2 -2 ч находиться в дистальной (ампулярной) части маточной трубы, где происходят встреча с яйцеклеткой и оплодотворение. Спермии сохраняют оплодотворяющую способность до 2 сут.

Женские половые клетки. Образование женских половых клеток (овогенез) совершается в яичниках циклически, при этом в течение овариального цикла каждые 24-28 дней образуется, как правило, один овоцит 1-го порядка (см. гл. XXII). Вышедший из яичника при овуляции овоцит 1-го порядка имеет диаметр около 130 мкм и окружен плотной блестящей зоной, или мембраной, и венцом фолликулярных клеток, число которых достигает 3- 4 тыс. Он подхватывается бахромками маточной трубы (яйцевода) и продвигается по ней. Здесь и заканчивается созревание половой клетки. При этом в результате второго деления созревания образуется овоцит 2-го порядка (яйцеклетка), который утрачивает центриоли и тем самым способность к делению. В ядре яйцеклетки человека содержится 23 хромосомы; одна из них является половой Х-хромосомой.

Яйцеклетка женщины (как и млекопитающих животных) вторично изолецитального типа, содержит небольшое количество желточных зерен, более или менее равномерно расположенных в ооплазме (рис. 32, Л, Б). Свой резерв питательных веществ яйцеклетка человека обычно расходует в течение 12-24 ч после овуляции, а затем погибает, если не будет оплодотворена.

Эмбриогенез

Оплодотворение

Оплодотворение происходит в ампулярной части яйцевода. Оптимальные условия для взаимодействия сперматозоидов с яйцеклеткой обычно создаются в пределах 12 ч после овуляции. При осеменении многочисленные спермии приближаются к яйцеклетке и вступают в контакт с ее оболочкой. Яйцеклетка начинает совершать вращательные движения вокруг своей оси со скоростью 4 вращения в минуту. Эти движения обусловлены влиянием биения жгутиков сперматозоидов и продолжаются около 12 ч. В процессе взаимодействия мужской и женской половых клеток в них происходит ряд изменений. Для спермиев характерны явления капацитации и акросомальная реакция. Капацитация представляет собой процесс активации спермиев, который происходит в яйцеводе под влиянием слизистого секрета его железистых клеток. В механизмах капацитации большое значение принадлежит гормональным факторам, прежде всего прогестерону (гормон желтого тела), активизирующему секрецию железистых клеток яйцеводов. После капацитации следует акросомальная реакция, при которой происходит выделение из сперматозоидов ферментов - гиалуронидазы и трипсина, играющих важную роль в процессе оплодотворения. Гиалуронидаза расщепляет гиалуроновую кислоту, содержащуюся в блестящей зоне. Трипсин расщепляет белки цитолеммы яйцеклетки и клеток лучистого венца. В результате происходят диссоциация и удаление клеток лучистого венца, окружающих яйцеклетку, и растворение блестящей зоны. В яйцеклетке цитолемма в области прикрепления спермия образует приподнимающий бугорок, куда входит один сперматозоид, при этом за счет кортикальной реакции (см. выше) образуется плотная оболочка - оболочка оплодотворения, препятствующая вхождению других спермиев и явлению полиспермии. Ядра женской и мужской половых клеток превращаются в пронуклеусы, сближаются, наступает стадия синкариона. Возникает зигота и к концу 1-х суток после оплодотворения начинается дробление.

Пол будущего ребенка определяется комбинацией половых хромосом в зиготе. Если яйцеклетка оплодотворена сперматозоидом с половой хромосомой X, то в образующемся диплоидном наборе хромосом (у человека их 46) содержатся две Х-хромосомы, характерные для женского организма. При оплодотворении сперматозоидом с половой хромосомой Y в зиготе образуется комбинация половых хромосом XY, характерная для мужского организма. Таким образом, пол ребенка зависит от половых хромосом отца. Так как число образующихся сперматозоидов с Х- и Y-хромосомами одинаково, число новорожденных девочек и мальчиков должно быть равным. Однако в связи с большей чувствительностью эмбрионов мужского пола к повреждающему действию различных факторов число новорожденных мальчиков немного меньше, чем девочек: на 100 мальчиков рождаются 103 девочки.

В медицинской практике выявлены различные виды патологии развития, обусловленные аномальным кариотипом. Причиной подобных аномалий является чаще всего нерасхождение в анафазе половинок половых хромосом в процессе мейоза женских половых клеток. В результате этого в одну клетку попадают две хромосомы и формируется набор половых хромосом XX, а в другую не попадает ни одна. При оплодотворении таких яйцеклеток спермиями с Х или У-половыми хромосомами могут образоваться следующие кариотипы: 1) с 47 хромосомами, из них 3 хромосомы Х (тип XXX) - сверхженский тип, 2) кариотип ОУ (45 хромосом) - нежизнеспособный; 3) кариотип XXY (47 хромосом) - мужской организм с рядом нарушений - уменьшены мужские половые железы, отсутствует сперматогенез, увеличены молочные железы(синдром Клайнфельтера); 4) тип ХО (45 хромосом) -женский организм с рядом изменений - невысокий рост, недоразвитие половых органов (яичника, матки, яйцеводов), отсутствие менструаций и вторичных половых признаков (синдром Тернера).

Дробление

Дробление зародыша человека начинается к концу 1-х суток и продолжается в течение 3-4 сут после оплодотворения, по мере продвижения зародыша по яйцеводу к матке. Движение зародыша обеспечивается перистальтическими сокращениями мускулатуры яйцевода, мерцанием ресничек его эпителия, а также перемещением секрета желез маточной трубы. Питание зародыша осуществляется за счет небольших запасов желтка в яйцеклетке и, возможно, содержимого маточной трубы.

Дробление зиготы человека полное неравномерное асинхронное. В течение первых суток оно происходит медленно. Первое деление завершается через 30 ч; при этом борозда дробления проходит по меридиану и образуется два бластомера. За стадией двух бластомеров следует стадия трех бластомеров. Через 40 ч образуются 4 клетки.

С первых же делений формируются два вида бластомеров: “темные” и “светлые”. “Светлые” бластомеры дробятся быстрее и располагаются одним слоем вокруг “темных”, которые оказываются в середине зародыша. Из поверхностных “светлых” бластомеров в дальнейшем возникает трофобласт, связывающий зародыш с материнским организмом и обеспечивающий его питание. Внутренние “темные” бластомеры формируют эмбриобласт - из него образуются тело зародыша и все остальные внезародышевые органы, кроме трофобласта. Начиная с трех суток дробление идет быстрее и на 4-е сутки зародыш состоит из 7-12 бластомеров. Уже через 50-60 ч образуется морула, а на 3-4-е сутки начинается формирование бластоцисты - полого пузырька, заполненного жидкостью (рис. 33, Б).

Бластоциста в течение 3 сут находится в яйцеводе, через 4-4"/ 2 сут она состоит из 58 клеток, имеет хорошо развитый трофобласт и расположенную внутри клеточную массу эмбриобласта. Через 5-5"/ 2 сут бластоциста попадает в матку. К этому времени она увеличивается в размерах благодаря росту числа бластомеров до 107 клеток и объема жидкости вследствие усиленного всасывания трофобластом секрета маточных желез, а также активной выработке жидкости самим трофобластом. Эмбриобласт располагается в виде узелка зародышевых клеток, который прикреплен изнутри к трофобласту на одном из полюсов бластоцисты.

В течение около 2 сут (с 5-х по 7-е сутки) зародыш проходит стадию свободной бластоцисты. В этот период в трофобласте и эмбриобласте происходят изменения, связанные с подготовкой к внедрению зародыша в стенку матки - имплантации.

Бластоциста покрыта оболочкой оплодотворения. В трофобласте увеличивается количество лизосом, в которых накапливаются ферменты, обеспечивающие разрушение (лизис) тканей матки и тем самым способствующие внедрению зародыша в толщу слизистой оболочки матки. Появляющиеся в трофобласте выросты разрушают оболочку оплодотворения. Зародышевый узелок упло-щается и превращается в зародышевый щиток, в котором начинается подготовка к первой фазе гаструляции. Гаструляция осуществляется путем деламинации с образованием двух листков: наружного - эпибласта и внутреннего - гипобласта (рис. 34).

Имплантация (нидация) - внедрение зародыша в стенку матки - начинается с 7-х суток после оплодотворения и продолжается около 40 ч. При имплантации зародыш полностью погружается в ткани слизистой оболочки матки. Различаются две стадии имплантации: адгезия (прилипание) и инвазия (проникновение). В первой стадии трофобласт прикрепляется к слизистой оболочке матки и в нем начинают дифференцироваться два слоя - цитотрофобласт и симпластотрофобласт, или плазмодиотрофобласт. Во время второй стадии симпластотрофобласт, продуцируя протеолитические ферменты, разрушает слизистую оболочку матки. При этом формирующиеся ворсинки трофобласта, внедряясь в матку, последовательно разрушают ее эпителий, затем подлежащую соединительную ткань и стенки сосудов, и трофобласт вступает в непосредственный контакт с кровью материнских сосудов. Образуется имплантационная ямка, в которой вокруг зародыша появляются участки кровоизлияний. Трофобласт вначале (первые 2 нед) потребляет продукты распада материнских тканей (гистиотрофный тип питания), затем питание зародыша осуществляется непосредственно из материнской крови (гематотрофный тип питания). Из крови матери зародыш получает не только все питательные вещества, но и кислород, необходимый для дыхания. Одновременно в слизистой оболочке матки усиливается образование из клеток соединительной ткани богатых гликогеном децидуальных клеток. После того как зародыш полностью погружается в имплантационную ямку, отверстие, образовавшееся в слизистой оболочке матки, заполняется кровью и продуктами разрушения ткани слизистой оболочки матки. В последующем дефект слизистой оболочки покрывается регенерирующим эпителием.

Период имплантации является первым критическим периодом развития зародыша. Гематотрофный тип питания, сменяющий гистиотрофный, сопровождается переходом к качественно новому этапу эмбриогенеза - ко второй фазе гаструляции и закладке внезародышевых органов.

Гаструляция

Гаструляция у человека осуществляется в две фазы. Первая фаза предшествует имплантации или идет в процессе ее, т. е. совершается на 7-е сутки, а вторая фаза начинается только на 14-15-е сутки. В период между этими фазами активно формируются внезародышевые органы, обеспечивающие необходимые условия для развития зародыша.

Первая фаза гаструляции происходит путем деламинации, при этом клетки эмбриобласта расщепляются на два листка - наружный - эпибласт (включает материал эктодермы, нервной пластинки, мезодермы и хорды), обращенный к трофобласту, и внутренний - гипобласт (включает материал зародышевой и внезародышевой энтодермы), обращенный в полость бластоцисты. На 7-е сутки развития обнаруживаются выселившиеся из зародышевого щитка клетки, которые располагаются в полости бластоцисты и формируют внезародышевую мезодерму (мезенхиму). К 11-м суткам она заполняет полость бластоцисты. Мезенхима подрастает к трофобласту и внедряется в него, при этом формируется хорион - ворсинчатая оболочка зародыша с первичными хориальными ворсинками.

Внезародышевая мезодерма участвует в формировании закладок амниотического (вместе с эктодермой) и желточного (вместе с энтодермой) пузырьков. Края эпибласта растут по мезодермальной закладке и формируют амниотический пузырек, дно которого обращено к энтодерме. Размножающиеся клетки энтодермы образуют к 13-14-м суткам желточный пузырек. У человека желточный мешок практически не содержит желтка, но заполнен серозной жидкостью.

К 13-14 суткам зародыш имеет следующее строение. Трофобласт вместе с подстилающей его внезародышевой мезодермой образует хорион. В части зародыша, которая обращена в глубь стенки матки, располагаются прилегающие друг к другу амниотический пузырек и желточный пузырек. Эта часть прикреплена к хориону при помощи амниотической, или зародышевой, ножки, образованной внезародышевой мезодермой. Прилегающие друг к другу дно амниотического и крыша желточного пузырьков образуют зародышевый щиток. Утолщенное дно амниотического пузырька представляет собой эпибласт, а остальная часть его стенки - внезародышевую эктодерму. Крышу желточного пузырька образует гипобласт, а стенку его вне щитка - внезародышевая энтодерма.

Таким образом, у человека в ранние периоды эмбриогенеза хорошо развиты внезародышевые части - хорион, амнион и желточный мешок.

Вторая фаза гаструляции начинается на 14-15-е сутки и продолжается до 17-х суток развития. Она становится возможной лишь после описанных процессов формирования вне-зародышевых органов и установления гематотрофного типа питания. В эпибласте клетки интенсивно делятся и смещаются по направлению к центру и вглубь, располагаясь между наружным и внутренним зародышевыми листками. В результате процесса иммиграции клеточного материала образуется первичная полоска, соответствующая по своим потенциям боковым губам бластопора, и первичный узелок – аналог дорсальной губы. Ямка, находящаяся на вершине узелка, постепенно углубляется и прорываясь через эктодерму, превращается в гомолог нейрокишечного канала ланцетника. Клеточный материал эпибласта, расположенный кпереди от первичного узелка, через дорсальную губу смещается в пространство между дном амниотического пузырька и крышей желточного, давая хордальный отросток. Одновременно с этим клеточный материал первичной полоски ложится в виде мезодермальных крыльев в околохордальное положение. Зародыш приобретает трехслойное строение и почти не отличается от зародыша птиц на сходной стадии эмбриогенеза.

К этому же времени относится и появление зачатка аллантоиса. Начиная с 15-х суток в амниотическую ножку из заднего отдела кишечной трубки врастает небольшой пальцевидный вырост - аллантоис. Таким образом, к концу второй фазы гаструляции завершается закладка всех зародышевых листков и всех внезародышевых органов.

На 17-е сутки продолжается закладка зачатков осевых органов. В этой стадии видны все три зародышевых листка. В составе эктодермы клеточные элементы располагаются в несколько слоев. Из зоны головного узелка наблюдается массовое выселение клеток, которые, располагаясь между экто- и энтодермой, и образуют зачаток хорды. Стенки амниотического пузырька и желточного мешка на большем протяжении двухслойны. В стенке желточного мешка происходит образование кровяных островков и первичных кровеносных сосудов.

Связь тела эмбриона с хорионом осуществляется за счет сосудов, прорастающих в стенку аллантоиса и ворсинки хориона. Наружный зародышевый листок в головном конце образован одним слоем клеток, наиболее высоких по медиальной оси зародыша. При переходе в эктодерму амниотического пузырька клетки его уплощаются. В переднем краниальном отделе можно видеть первичную полоску и первичный узелок. Полость плодного пузыря выстлана хорошо развитым наружным листком мезодермы (соматоплевры), которая образует также основу хориальных ворсин. Стенки желточного мешка и амниотического пузырька выстланы однослойным эпителием (соответственно энтодермального и эктодермального происхождения) и висцеральной экзоцеломической мезодермой.

Питание и дыхание эмбриона происходит посредством аллантохориона. Первичные ворсинки омываются материнской кровью.

Начиная с 20-21-х суток происходит обособление тела зародыша от внезародышевых органов и окончательное формирование осевых зачатков. Изменения в самом зародыше раньше всего выражаются в дифференцировке мезодермы и расчленении части ее на сомиты. Поэтому данный период называют сомитным в отличие от предыдущего, пресомитного периода закладки осевых зачатков эмбриона.

Обособление тела зародыша от внезародышевых (провизорных) органов происходит путем образования туловищной складки, которая на 20-е сутки достаточно отчетливо выражена. Зародыш все более отделяется от желточного мешка, пока не оказывается связанным с ним стебельком, при этом формируется кишечная трубка.

Дифференцировка зародышевых зачатков

Дифференцировка эктодермы. Нейруляция - процесс образования нервной трубки - протекает во времени неодинаково в различных частях зародыша. Замыкание нервной трубки начинается в шейном отделе, затем распространяется кзади и несколько замедленнее - в краниальном направлении, где формируются мозговые пузырьки. Примерно на 25-е сутки нервная трубка полностью замыкается; с внешней средой сообщаются только два незамкнувшихся отверстия на переднем и заднем концах - передний и задний невропоры. Задний невропор соответствует нейрокишечному каналу. Через 5-6 сут оба невропора зарастают. При смыкании боковых стенок нервных валиков и образовании нервной трубки появляется группа эктодермальных клеток, образующихся в области соединения нейральной и остальной (кожной) эктодермы. Эти клетки, сначала располагающиеся в виде продольных рядов по обе стороны между нервной трубкой и поверхностной эктодермой, образуют нервный гребень. Клетки нервного гребня способны к миграциям. В туловище мигрирующие клетки образуют два главных потока: одни мигрируют в поверхностном слое, дерме, другие - в брюшном направлении, образуя парасимпатические и симпатические ганглии и мозговое вещество надпочечников. Часть клеток остается в области нервного гребня, формируя ганглиозные пластинки, которые сегментируются и дают начало спинномозговым узлам.

Хордальный отросток - провизорный орган - рассасывается.

Дифференцировка мезодермы начинается с 20-х суток эмбриогенеза. Дорсальные участки мезодермальных листков разделяются на плотные сегменты, лежащие по сторонам от хорды - сомиты. Процесс сегментации дорсальной мезодермы и образования сомитов начинается в головной части зародыша и быстро распространяется в каудальном направлении. На 22-е сутки развития у эмбриона имеется 7 пар сегментов, на 25-е - 14, на 30-е - 30 и на 35-е сутки - 43-44 пары. В отличие от сомитов вентральные отделы мезодермы (спланхнотом) не сегментируются, а расщепляются на два листка - висцеральный и париетальный. Небольшой участок мезодермы, связывающий сомиты со спланхнотомом, разделяется на сегменты - сегментные ножки (нефрогонотом). На заднем конце зародыша сегментации этих отделов не происходит. Здесь взамен сегментных ножек располагается несегментированный нефрогенный зачаток (нефрогенный тяж).

В процессе дифференцировки мезодермы из дерматома и склеротома возникает эмбриональный зачаток соединительной ткани - мезенхима. В образовании мезенхимы принимают участие и другие зародышевые листки, хотя преимущественно она возникает из мезодермы. Часть мезенхимы развивается за счет клеток, имеющих эктодермальное происхождение. Участие в образовании мезенхимы принимает и зачаток энтодермы головного отдела кишечной трубки.

Дифференцировка энтодермы. Выделение кишечной энтодермы начинается с момента появления туловищной складки. Последняя, углубляясь, отделяет зародышевую энтодерму будушей кишки от внезародышевой энтодермы желточного мешка. В задней части зародыша в состав образующейся кишки входит и тот участок энтодермы, из которого возникает энтодермальный вырост аллантоиса. В начале 4-й недели на переднем конце зародыша образуется эктодермальное впячивание - ротовая ямка. Углубляясь, ямка доходит до переднего конца кишки и после прорыва разделяющей их мембраны превращается в ротовое отверстие будущего ребенка.

Кишечная трубка образуется первоначально как часть энтодермы желточного мешка, затем в состав ее переднего отдела включается материал прехордальной пластинки. Из материала прехордальной пластинки развивается в дальнейшем многослойный эпителий переднего отдела пищеварительной трубки и ее производных. Мезенхима кишечной трубки преобразуется в соединительную ткань и гладкую мускулатуру.

Анатомическое формирование органов (органогенез) совершается параллельно процессам гистогенеза (образование тканей).

Внезародышевые органы человека

Хорион

Ворсинчатые разрастания трофобласта, именуемые позднее хорионом, состоят из двух структурных компонентов - эпителия и внезародышевой мезенхимы. Слизистая оболочка в той части, которая после имплантации войдет в состав плаценты - основная отпадающая оболочка, разрастается сильнее, чем в других участках - пристеночная отпадающая оболочка и сумочная отпадающая оболочка, отделяющая зародыш от полости матки. В дальнейшем это различие выступает все более отчетливо, причем ворсины в области пристеночной и сумочной оболочек вообще исчезают, а в области основной отпадающей оболочки.заменяются сильно разветвленными вторичными ворсинами, строму которых образует соединительная ткань с кровеносными сосудами. С этого момента хорион разделяется на два отдела - ветвистый и гладкий . В области расположения ветвистого хориона формируется плацента. За счет основной отпадающей оболочки образуется материнская часть

плаценты, а за счет ветвистого хориона-ее плодная часть. Ветвистый хорион к 3 мес приобретает вместе с основной отпадающей оболочкой типичную для сформированной плаценты дискоидальную форму.

Плацентация у человека совершается в течение 3-6-й недели внутриутробного развития и совпадает с периодом формирования зачатков органов. Этот период является вторым критическим в эмбриогенезе человека, так как различные патогенные воздействия в это время наиболее часто могут вызвать нарушения.

Детское место, или плацента

Плацента - внезародышевый орган, за счет которого устанавливается связь зародыша с организмом матери. Плацента человека относится к типу дискоидальных гемохориальных ворсинчатых плацент.

Это важный временный орган с многообразными функциями, обеспечивающий связь плода с материнским организмом. Плацента выполняет трофическую, экскреторную (для плода), эндокринную (вырабатывает хориальный гонадотропин, прогестерон, плацентарный лактоген, эстрогены и др.), защитную (включая иммунологическую защиту). Однако через плаценту (через гематоплацентарный барьер) легко проникают алкоголь, наркотические и лекарственные вещества, никотин, а также многие гормоны из крови матери в кровь плода.

В плаценте различают зародышевую, или плодную, часть и материнскую, или маточную . Плодная часть представлена ветвистым хорионом и приросшей к нему амниотической оболочкой, а материнская - видоизмененной базальной частью эндометрия.

Развитие плаценты начинается на 3-й неделе, когда во вторичные (эпителиомезенхимные ворсины) начинают врастать сосуды и образовываться третичные ворсины. На 6-8-й неделе вокруг сосудов дифференцируются макрофаги, фибробласты, коллагеновые волокна. В дифференцировке фибробластов и синтезе коллагена важную роль играют витамины С и А, без достаточного поступления которых в организм беременной женщины нарушается прочность связи зародыша с материнским организмом и создается угроза самопроизвольного аборта.

Параллельно увеличивается активность гиалуронидазы, за счет которой и происходит расщепление молекул гиалуроновой кислоты.

Уменьшение вязкости основного вещества создает наиболее благоприятные условия для обмена веществ между тканями матери и плода. В основном веществе соединительной ткани хориона содержится значительное количество гиалуроновой и хондроитинсерной кислот, с которыми связана регуляция проницаемости плаценты.

Формирование коллагеновых волокон в ворсинах совпадает по времени с усилением протеолитической активности трофобластического эпителия (цитотрофобласта) и его производного (синцитиотрофобласта).

С развитием плаценты происходят разрушение слизистой оболочки матки и смена гистиотрофного питания на гематотрофное. Это означает, что ворсины хориона омываются кровью матери, излившейся из разрушенных сосудов эндометрия в лакуны.

Зародышевая, или плодная, часть плаценты к концу 3-го месяца представлена ветвящейся хориальной пластинкой, состоящей из волокнистой (коллагеновой) соединительной ткани, покрытой цито- и синцитиотрофобластом. Ветвящиеся ворсины хориона (стволовые, или якорные, ворсины) хорошо развиты лишь со стороны, обращенной к миометрию. Здесь они проходят через всю толщу плаценты и своими вершинами погружаются в базальную часть разрушенного эндометрия.

Хориальный эпителий, или цитотрофобласт, на ранних стадиях развития представлен однослойным эпителием с овальными ядрами. Эти клетки размножаются митотическим путем. Из них развивается синцитиотрофобласт - многоядерная структура, покрывающая редуцирующийся цитотрофобласт. В синцитиотрофобласте содержится большое количество различных протеолитических и окислительных ферментов [АТФ-азы, щелочная и кислая фосфа-тазы, 5-нуклеотидазы, ДПН-диафоразы, глюкозо-6-фосфатдегид-рогеназы (Г-6-ФДГ), а-ГФДГ, сукцинатдегидрогеназа-СДГ, цитохромоксидаза - ЦО, моноаминоксидаза - МАО, неспецифические эстеразы, ЛДГ, НАД и НАДФ-диафоразы и др. - всего около 60], что связано с его ролью в обменных процессах между организмом матери и плода. В цитотрофобласте и в синцитии выявляются пиноцитозные пузырьки, лизосомы и другие органеллы. Начиная со 2-го месяца хориальный эпителий истончается и постепенно заменяется синцитиотрофобластом. В этот период синцитиотрофобласт по толщине превосходит цитотрофобласт, на 9-10-й неделе синцитий истончается, а количество ядер в нем увеличивается. На поверхности синцития, обращенной в лакуны, появляются многочисленные микроворсинки в виде щеточной каемки.

Между синцитием и клеточным трофобластом имеются щелевидные субмикроскопические пространства, доходящие местами до базальной мембраны трофобласта, что создает условия для двустороннего проникновения трофических веществ, гормонов и др. между синцитием и стромой ворсин.

Во второй половине беременности, и особенно в конце ее, трофобласт местами сильно истончается и ворсины покрываются фибриноподобной оксифильной массой, являющейся, по-видимому, продуктом свертывания плазмы и распада трофобласта (“фибриноид Лангханса”).

С увеличением срока беременности уменьшается количество макрофагов и коллагенпродуцирующих дифференцированных фибробластов, появляются фиброциты. Количество коллагеновых волокон, хотя и нарастает, но до конца беременности в большинстве ворсин остается небольшим.

Структурно-функциональной единицей сформированной плаценты является котиледон, образованный стволовой ворсиной и ее вторичными и третичными (конечными) разветвлениями. Общее количество котиледонов в плаценте достигает 200.

Материнская часть плаценты представлена базальной пластинкой и соединительнотканными септами, отделяющими котиледоны друг от друга, а также лакунами, заполненными материнской кровью. В местах контакта стволовых ворсин с отпадающей оболочкой встречаются также трофобластические клетки (периферический трофобласт).

Уже на ранних стадиях беременности ворсины хориона разрушают наружные, т. е. ближайшие к плоду, слои основной отпадающей оболочки, и на их месте образуются заполненные материнской кровью лакуны, в которые свободно свисают ворсины хориона. Глубокие неразрушенные части отпадающей оболочки вместе с трофобластом образуют базальную пластинку.

Базальный слой эндометрия - соединительная ткань слизистой оболочки матки, содержащая децидуальные клетки. Эти крупные, богатые гликогеном клетки соединительной ткани расположены в глубоких слоях слизистой оболочки матки. Они имеют четкие границы, округлые ядра и оксифильную цитоплазму. В базальной пластинке, чаще в месте прикрепления ворсин к материнской части плаценты, встречаются скопления клеток периферического цитотрофобласта. Они напоминают децидуальные клетки, но отличаются более интенсивной базофилией цитоплазмы. Аморфная субстанция (фибриноид Рора) находится на поверхности базальной пластинки, обращенной к хориальным ворсинам. Трофобластические клетки базальной пластинки вместе с фибриноидом играют существенную роль в обеспечении иммунологического гомеостаза в системе мать - плод.

Часть основной отпадающей оболочки, расположенной на границе ветвистого и гладкого хориона, т. е. по краю плацентарного Диска, при развитии плаценты не разрушается. Плотно прирастая к хориону, она образует замыкающую пластинку, препятствующую истечению крови из лакун плаценты.

Кровь в лакунах непрерывно обновляется. Она поступает из Маточных артерий, входящих сюда из мышечной оболочки матки. Эти артерии идут по плацентарным перегородкам и открываются в лакуны. Материнская кровь оттекает от плаценты по венам, берущим начало от лакун крупными отверстиями.

Кровь матери и кровь плода циркулирует по самостоятельным сосудистым системам и не смешивается между собой. Гемохориальный барьер, разделяющий оба кровотока, состоит из эндотелия сосудов плода, окружающей сосуды соединительной ткани, эпителия хориальных ворсин (цитотрофобласт, синцитиотрофобласт), а, кроме того, из фибриноида, который местами покрывает ворсины снаружи.

Формирование плаценты заканчивается в конце 3-го месяца беременности.

Сформированная к этому времени плацента обеспечивает окончательную дифференцировку и бурный рост образовавшихся в предыдущем периоде зачатков органов плода.

Желточный мешок

Желточный мешок образован внезародышевой энтодермой и внезародышевой мезодермой, принимает активное участие в питании и дыхании эмбриона человека очень недолго. После образования туловищной складки желточный мешок оказывается связанным с кишкой желточным стебельком. Сам желточный мешок смещается в пространство между мезенхимой хориона и амниотической оболочкой. Его основная роль - кроветворная. В качестве кроветворного органа он функционирует до 7-8-й недели, а затем подвергается обратному развитию. В составе пупочного канатика остаток желточного мешка позднее обнаруживается в виде узкой трубочки. В стенке желточного мешка формируются первичные половые клетки - гонобласты, мигрирующие из него с кровью в зачатки половых желез.

Амнион

Амнион очень быстро увеличивается в размерах и к концу 7-й недели его соединительная ткань входит в контакт с соединительной тканью хориона. При этом эпителий амниона переходит на амниотическую ножку, превращающуюся позднее в пупочный канатик, и в области пупочного кольца смыкается с эктодермальным покровом кожи эмбриона.

Амниотическая оболочка образует стенку резервуара, в котором находится плод. Основная его функция - выработка околоплодных вод, обеспечивающих среду для развивающегося организма и предохраняющих его от механического повреждения. Эпителий амниона, обращенный в его полость, выделяет околоплодные воды, а также принимает участие в обратном всасывании их. Амниотическая жидкость создает необходимую для развития зародыша водную среду, поддерживая до конца беременности необходимый состав и концентрацию солей в околоплодной жидкости (см. рис. 37, А). Амнион выполняет также защитную функцию, предупреждая попадание в плод вредоносных агентов.

Эпителий в ранних стадиях на всем протяжении однослойный плоский, образован крупными полигональными, тесно прилегающими друг к другу клетками, в которых постоянно происходит митоз. На 3-м месяце эмбриогенеза эпителий преобразуется в призматический. Эпителий плацентарного диска призматический, местами многорядный. На поверхности эпителия имеются микроворсинки. В цитоплазме всегда содержатся небольшие капли липидов, зерна гликогена и гликозаминогликаны. В апикальных частях клеток имеются различной величины вакуоли, содержимое которых выделяется в полость амниона. Эпителий внеплацентарного амниона кубический. В эпителии амниона, покрывающем плацентарный диск, вероятно, имеет место преимущественно секреция, а в эпителии внеплацентарного амниона - преимущественно резорбция околоплодных вод.

В строме амниотической оболочки различают базальную мембрану, слой плотной соединительной ткани и губчатый слой рыхлой соединительной ткани, связывающей амнион с хорионом. В слое плотной соединительной ткани можно выделить лежащую под базальной мембраной бесклеточную часть и клеточную часть. Последняя состоит из нескольких слоев фибробластов, между которыми находится густая сеть плотно прилежащих друг к другу тонких пучков коллагеновых и ретикулярных волокон, образующих неправильную решетку, ориентированную параллельно поверхности оболочки.

Губчатый слой образован очень рыхлой (“слизистой”) соединительной тканью. Редкие пучки коллагеновых волокон, являющиеся продолжением тех, которые залегают в слое плотной соединительной ткани, связывают амнион с хорионом. Связь эта очень непрочная, и поэтому обе оболочки легко отделить друг от друга. В основном веществе соединительной ткани много гликозаминогликанов.

Аллантоис

Аллантоис представляет собой небольшой пальцевидный отросток энтодермы, врастающий в амниотическую ножку. У человека аллантоис не достигает большого развития, но его значение в обеспечении питания и дыхания зародыша все же велико, так как по нему к хориону растут сосуды, конечные разветвления которых залегают в строме ворсин. На 2-м месяце эмбриогенеза аллантоис редуцируется.

Пупочный канатик

Пупочный канатик образуется в основном из мезенхимы, находящейся в амниотической ножке и желточном стебельке. В его формировании принимают участие также аллантоис и растущие по нему сосуды. С поверхности все эти образования окружены амниотической оболочкой. Желточный стебелек и аллантоис быстро редуцируются, и в пупочном канатике новорожденного обнаруживаются лишь их остатки.

Сформированный пупочный канатик - упругое соединительно- тканное образование, в котором проходят две пупочные артерии и пупочная вена. Он образован типичной студенистой (слизистой) тканью, в которой содержится огромное количество гиалуроновой кислоты. Именно эта ткань, получившая название вартонова студня, обеспечивает тургор и упругость канатика. Покрывающая поверхность канатика амниотическая оболочка срастается с его студенистой тканью.

Значение этой ткани чрезвычайно велико. Она предохраняет пупочные сосуды от сжатия, обеспечивая тем самым непрерывное снабжение эмбриона питательными веществами, кислородом. Наряду с этим студенистая ткань препятствует проникновению вредоносных агентов из плаценты к эмбриону внесосудистым путем и выполняет, таким образом, защитную функцию.

На основании изложенного можно отметить основные особенности ранних стадий развития зародыша человека: 1) асинхронный тип полного дробления и образование “светлых” и “темных” бластомеров; 2) раннее обособление и формирование внезародышевых органов; 3) раннее образование амниотического пузырька и отсутствие амниотических складок; 4) наличие двух фаз гаструляции - деламинации и иммиграции, в течение которых происходит также развитие провизорных органов; 5) интерстициальный тип имплантации; 6) сильное развитие амниона, хориона и слабое развитие желточного мешка и аллантоиса.

Система мать - плод

Система мать - плод возникает в процессе беременности и включает в себя две подсистемы - организм матери и организм плода, а также плаценту, являющуюся связующим звеном между ними.

Взаимодействие между организмом матери и организмом плода обеспечивается прежде всего нейрогуморальными механизмами. При этом в обеих подсистемах различают следующие механизмы: рецепторные, воспринимающие информацию, регуляторные, осуществляющие ее переработку, и исполнительные.

Рецепторные механизмы организма матери расположены в матке в виде чувствительных нервных окончаний, которые первыми воспринимают информацию о состоянии развивающегося плода. В эндометрии находятся хемо-, механо- и терморецепторы, а в кровеносных сосудах - барорецепторы. Рецепторные нервные окончания свободного типа особенно многочисленны в стенках маточной вены и в децидуальной оболочке в области прикрепления плаценты. Раздражение рецепторов матки вызывает изменения интенсивности дыхания, уровня кровяного давления в организме матери, направленные на обеспечение нормальных условий для развивающегося плода.

Регуляторные механизмы организма матери включают отделы центральной нервной системы (височная доля мозга, гипоталамус, мезэнцефальный отдел ретикулярной формации), а также гипоталамоэндокринную систему. Важную регуляторную функцию выполняют гормоны: половые, тироксин, кортикостероиды, инсулин и др. Так, во время беременности происходит усиление активности коры надпочечников матери и повышение выработки кортикостероидов, которые участвуют в регуляции метаболизма плода. В плаценте вырабатывается хорио-нический гонадотропин, стимулирующий образование адрено-кортикотропного гормона гипофиза, который активизирует деятельность коры надпочечников и усиливает секрецию кортикостероидов.

Регуляторные нейроэндокринные аппараты матери обеспечивают сохранение беременности, необходимый уровень функционирования сердца, сосудов, кроветворных органов, печени и оптимальный уровень обмена веществ, газов в зависимости от потребностей плода.

Рецепторные механизмы организма плода воспринимают сигналы об изменениях организма матери или собственного гомеостаза. Они обнаружены в стенках пупочных артерий и вены, в устьях печеночных вен, в коже и кишечнике плода.

Раздражение этих рецепторов приводит к изменению частоты сердцебиения плода, скорости кровотока в его сосудах, влияет на содержание сахара в крови и т. д.

Регуляторные нейрогуморальные механизмы организма плода формируются в процессе развития. Первые двигательные реакции у плода появляются на 2-3-м месяце развития, что свидетельствует о созревании нервных центров. Механизмы, регулирующие газовый гомеостаз, формируются в конце II триместра эмбриогенеза. Начало функционирования центральной эндокринной железы - гипофиза - отмечается на 3-м месяце развития. Синтез кортикостероидов в надпочечниках плода начинается со второй половины беременности и увеличивается с его ростом. У плода усилен синтез инсулина, который необходим для обеспечения его роста, связанного с углеводным и энергетическим обменом. Следует отметить, что у новорожденных, родившихся от матерей, страдающих сахарным диабетом, когда снижена выработка инсулина, наблюдается увеличение массы тела и повышение продукции инсулина в островках поджелудочной железы.

Действие нейрогуморальных регуляторных систем плода направлено на исполнительные механизмы - органы плода, обеспечивающие изменение интенсивности дыхания, сердечно-сосудистой деятельности, мышечной активности и т. д. и определяющие изменение уровня газообмена, обмена веществ, терморегуляции и других функций.

Как уже указывалось, в обеспечении связей в системе мать - плод особо важную роль играет плацента, которая способна не только аккумулировать, но и синтезировать вещества, необходимые для развития плода. Плацента выполняет эндокринные функции, вырабатывая ряд гормонов: прогестерон, эстроген, хорионический гонадотропин, плацентарный лактоген и др. Через плаценту Между матерью и плдом осуществляются гуморальные и нервные связи. Существуют также экстраплацентарные гуморальные связи через плодные оболочки и амниотическую жидкость.

Гуморальный канал связи - самый обширный и информативный. Через него происходит поступление кислорода и углекислого газа, белков, углеводов, витаминов, электролитов, гормонов, антител и др. В норме чужеродные вещества не проникают из организма матери через плаценту. Они могут начать проникать лишь в условиях патологии, когда нарушена барьерная функция плаценты. Важным компонентом гуморальных связей являются иммунологические связи, обеспечивающие поддержание иммунного гомеостаза в системе мать - плод.

Несмотря на то, что организм матери и плода генетически чужеродны по составу белков, иммунологического конфликта обычно не происходит. Это обеспечивается рядом механизмов, среди которых существенное значение имеют: 1 -синтезируемые синцитиотрофобластом белки, тормозящие иммунный ответ материнского организма; 2 - хориональный гонадотропин и плацентарный лактоген, находящиеся в высокий концентрации на поверхности синцитиотрофобласта, принимают участие в угнетении Материнских лимфоцитов; 3-иммуномаскирующее действие гликопротеинов перицеллюлярного фибриноида плацеты, заряженного так же, как и лимфоциты омывающей крови, отрицательно; 4 - протеолитические свойства трофобласта также способствуют инактивации чужеродных белков. В иммунной защите принимают участие и амниотические воды, содержащие антитела, блокирующие антигены А и В, свойственные крови беременной, и не допускают их в кровь плода в случае несовместимой беременности.

Показана определенная взаимосвязь гомологичных органов матери и плода: поражение какого-либо органа матери ведет к нарушению развития одноименного органа плода. В эксперименте на животных установлено, что сыворотка крови животного, у которого удалили часть какого-либо органа, стимулирует пролиферацию в одноименном органе. Однако механизмы этого явления изучены недостаточно.

Нервные связи включают плацентарный и экстраплацентарный каналы: плацентарный (у плода - интерорецептивный) - раздражение баро- и хеморецепторов в сосудах плаценты и пуповины, а экстраплацентарный (у плода - экстерорецептивный) - поступление в центральную нервную систему матери раздражении, связанных с ростом плода и др. Наличие нервных связей в системе мать - плод подтверждается данными об иннервации плаценты, высоком содержании в ней ацетилхолина, отставании развития плода в денервированном роге матки экспериментальных животных и др.

В процессе формирования системы мать - плод существует ряд критических периодов, наиболее важных для установления взаимодействия между двумя системами, направленных на создание оптимальных условий для развития плода.

В онтогенезе человека можно выделить несколько критических. периодов развития: в прогенезе, эмбриогенезе и постнатальной жизни. К ним относятся: 1) развитие половых клеток-овогенез и сперматогенез; 2) оплодотворение; 3) имплантация (7- 8-е сутки эмбриогенеза); 4) развитие осевых зачатков органов и формирование плаценты (3-8-я неделя развития); 5) стадия усиленного роста головного мозга (15-20-я неделя); 6) формирование основных функциональных систем организма и дифференцировка полового аппарата (20-24-я неделя); 7) рождение; 8) период новорожденности (до 1 года); 9) половое созревание (11- 16 лет).

Биологические и социальные факторы, оказывающие влияние на идентификацию пола находятся в такой близкой зависимости, что в них сложно разобраться. Когда у родителей рождается ребенок, в теперешнем времени уже известно наперед какого пола он будет, а если бы мать не знала этого до родов. Какая бы тогда у нее была жажда разузнать пол малыша поскорее. Это происходит потому, что родители по-разному относятся к детям, в зависимости от их половой принадлежности. Таким образом, поведение мамы и папы, дает стимул ребенку узнать о себе больше, идентифицировав себя по полу.

После зачатия, происходит процесс формирования у эмбриона половых признаков. Соединившись, женская и мужская клетки объединяют свои хромосомы, по 23 от сперматозоида и яйцеклетки в новый организм. Получается в сумме 46 хромосом. Женская клетка несет в себе всегда Х-хромосому, а мужской сперматозоид или У, или Х. Таким образом женский код - это XX, а мужской XY - мужской.

Далее в развитии эмбриона занимает место этап становления половых желез. Это происходит на шестой недели беременности. До этого срока определение плода невозможно. Эмбрион мужского пола возникает в случае присутствия мужской хромосомы. Здесь обязательно должен иметь место антиген H-Y антиген, отвечающий за мужской генетический код. Отсутствие этого антигена говорит о том, что пол ребенка будет женский.

Появление половых органов происходит после этапа формирования половых желез с помощью гормонов. Данный этап берет свое начало на 8-9 неделе беременности. Когда количество тестостерона вырабатывается больше, пол определяется как мужской. И в женском, и в мужском организме есть гормоны обоих полов, однако, большее количество определенного гормона говорит о конкретной половой принадлежности.

Процесс внутриутробного развития плода предполагает воздействие на него андрогенов (гормоны, играющие определяющую роль в возникновении вторичных половых признаков как у одного, так и у другого пола, например грубость голоса, «растительность» на лице и всем теле. Как у всех мужчин, усиление секреции пота, удлинение полового члена, становление лица и скелета тела по мужскому типу, увеличение простаты в размерах и количества ее секрета). Если андрогены не произвели достаточного влияния на плод, тогда на свет появится девочка. В первом периоде происходит закладка полового органа. Затем идет создание половой ориентации мозга. Идет этап формирования мужского или женского гипоталамуса.

Закладка наружных органов

На седьмой неделе органы, присущие определенному полу претерпевают изменения под влиянием половых гормонов.
У женского плода стероидные гормоны формируют половые губы, а у мужского - половой член. Половой бугорок преобразуется в пенис у мужчин и в клитор у женщин.
В начале 3-его месяца происходит раскрытие влагалищной щели у девочек и увеличение длины полового члена у мальчиков. 11-12 недели - это период, когда можно точно отличить один пол от другого по половым признакам, у плода с хромосомами ХУ происходит зарастание срединного шва.

Закладка внутренних органов:

  1. Начальные 6 недель беременности эмбрион мужского и женского полов отличить невозможно;
  2. Лишь спустя 8 недель беременности яички эмбриона с половыми признаками мальчика выделяют тестостерон и ингибитор мюллеровых протоков, приводящий к исчезновению самих протоков. В случае отсутствия мужских гормонов мюллеровы протоки (двойной канал с соединенной дистальной частью, которая появляется после окончания второго месяца развития эмбриона внутри матери из желобков, выполняющих разграничительную роль эпителия) начинают преображаться в женские органы. Вольфовы протоки же (структуры у плода, впоследствии развивающиеся в мужские половые органы, находящиеся внутри) прекращают свое существование.
  3. По истечении 9 месяцев беременности в женском плоде мюллеров проток превращается в фаллопиевы трубы, а в мужском плоде - железы переходят в мошонку.

Видео как формируется пол ребенка

Келли. Основы современной сексологии. Изд. Питер

Перевели с английского А. Голубев, К Исупова, С. Комаров, В, Мисник, С. Панков, С. Рысев, Е. Турутина

Развитие гендера и социальные подходы к нему. Часть 1

Развитие гендера и социальные подходы к нему. Часть 3

Развитие гендера и социальные подходы к нему. Часть 4

Развитие гендера и социальные подходы к нему. Часть 5

Гормоны и развитие плода. Половые железы зародыша, чьи хромосомы запрограммированы на формирование женских признаков, автоматически разовьются в яичники. Однако если гонады запрограммированы на развитие по мужскому типу, для формирования яичек необходим еще один процесс, контролируемый SRY -геном, нормально расположенным в Y -хромосоме. Значительный объем исследовательских данных указывал на существование вещества, названного H - Y -антигеном, которое помогает превращению зародышевых половых желез в яички, и это вещество в конце концов было выделено (Pennisi , 1995).

Когда яички сформированы, они также начинают производить два гормона. Тестостерон обеспечивает преобразование вольфовых протоков во внутренние половые органы мужчины. SRY -ген активирует яички зародыша на выработку антимюллерова гормона, который подавляет превращение мюллеровых протоков в женские половые органы (Haqq et al ., 1994; Hunter , 1995). Тот факт, что для развития эмбриона по мужскому типу необходимо присутствие этих двух гормонов, иногда носит название «принципа Адама». Также предполагалось, что сложные генетические и биохимические взаимодействия, которые должны реализоваться для этого, вполне способны обеспечить несколько большую уязвимость мужского пути развития в отношении изменений и осложнений в окружающей среде. Известно, например, что случаи задержки умственного развития, проблем с обучаемостью, некоторых форм патологии речи и вариантного сексуального поведения чаще встречаются у мужчин, чем у женщин (Reinisch & Sanders , 1992).

Насколько известно на сегодняшний день, развитие женских половых органов и всей их репродуктивной системы не зависит от производства какого-либо гормона, и этот факт получил обозначение «принцип Евы». Если SRY -ген отсутствует, так что мужские гормоны не вырабатываются, зародышевые половые железы становятся яичниками, а мюллеровы протоки превращаются в матку, фаллопиевы трубы и часть влагалища. Без тестостерона, стимулирующего их развитие, вольфовы протоки просто исчезают. Тем не менее обнаружение гена DAX -1 в Х-хромосоме поставило под сомнение предположение, что развитие плода по женскому типу происходит в некотором смысле «по умолчанию» при отсутствии SRY -гена.

С 10-й недели развития плода происходит половая дифференциация на трех различных уровнях - внутренних половых органов, наружных половых органов и головного мозга. Развитие мужского организма в основном происходит под влиянием тестостерона. И яичники, и яички сперва развиваются в брюшной полости; затем яичники перемешаются в область таза, а яички опускаются в мошонку.

Среди многих низших млекопитающих у самцов и самок одного вида наблюдается предсказуемо различающееся поведение. Первоначально предполагалось, что гормоны не оказывают большого влияния на предопределенность различающегося поведения полов. Работа Уильяма Янга (Young , 1961) и другие исследования привели к гипотезе о том, что тестостерон, присутствующий в эмбрионах многих млекопитающих, воздействует на структуры и пути формирования центральной нервной системы, особенно головного мозга, таким образом, что у взрослого животного проявляется поведение, свойственное самцам. Если тестостерон отсутствует, поведение взрослой особи является типичным для самок. Это явление было обнаружено, например, у обезьян и крыс. У многих млекопитающих, по-видимому, имеется критический период в развитии и в половой дифференциации, когда присутствие мужских гормонов оказывает этот «маскулинизируюший» эффект. В то же время происходит параллельный и независимый процесс дефеминизации. Отсутствие вырабатываемых яичками андрогенов приводит к обратным процессам: демаскулинизации и феминизации (Olsen , 1992; Rubinow & Schmidt , 1996).

Отклонения при половой дифференциации

Расстройство

Причина

Типичные проявления

Преобладающая гендерная идентичность

Последствия внутриутробной андрогенизации

Назначение гормональной терапии во время беременности

Особи генетически женского пола (XX ) с увеличенным пенисоподобным клитором. Обычно подвергаются хирургической коррекции и воспитываются как девочки

Последствия воздействия диэтилстилбестрола

Назначение диэтилстилбестрола для предотвращения выкидыша

У мальчиков: меньшая разделенность функций между полушариями головного мозга; снижение пространственных способностей; меньшая уверенность в себе. У девочек; по непроверенным данным, может отмечаться маскулинизирующий эффект

У мальчиков - маскулинная с возможностью развития фемининных черт; у девочек - неопределенная

Врожденная гиперплазия надпочечников

Генетическое нарушение, при котором в организме накапливаются андрогены

Маскулинизация гениталий у особей генетически женского пола (XX ).

Даже после хирургической коррекции и воспитаний какдевочек наблюдается тяга к маскулинным игрушкам и паттернам поведения, а также более развитые пространственные способности

Любая, с тенденцией к наличию некоторых маскулинных черт

Синдром нечувствительности кандрогенам

Клетки тела генетически мужского организма не способны нормально реагировать на тестостерон

Генетически мальчики (XY ), рождаются с женскими гениталиями и обычно воспитываются как девочки. В период полового созревания развиваются груди, но менструации отсутствуют. Как правило, демонстрируют женское поведение

Фемининная

Синдром нехватки дигидротестостерона

Недостаток фермента, необходимого для нормально го развития мужских половых органов

Генетически мальчики (XY ), рождаются с гениталиями, больше похожими на мужские. В период полового созревания развиваются мужские вторичные половые признаки. Впоследствии могут жить как особи мужского пола

Маскулинная

Воздействие синтетических гормонов. Другие свидетельства показали, что воздействие на плод некоторых синтетических гормонов, сходных с половыми, может привести к формированию поведенческих особенностей, которые можно рассматривать как свойственные мужчинам или женщинам. Большие дозы синтетических прогестинов отдельных типов, в прошлом обычно использовавшихся при лечении некоторых медицинских проявлений во время беременности, по-видимому, влияют на плод примерно так же, как и тестостерон. Некоторые особи женского пола, подвергавшиеся пренатальному воздействию этих гормонов, рождались с гениталиями, скорее напоминавшими мужские, например с увеличенными клиторами. Как мужчины, так и женщины, подвергшиеся воздействию сходных с тестостероном гормонов, впоследствии наблюдались и сравнивались с контрольными группами. Были получены свидетельства, что такое воздействие приводит к проявлению большего индивидуализма, независимости, самоуверенности и агрессивности, чем у мужчин и женщин, не сталкивавшихся с синтетическими гормонами до рождения. Рассчитываемые согласно некоторым психологическим шкалам «индексы маскулинности» у таких людей, как правило, оказываются более высокими (Reinisch & Sanders , 1992).

Другой синтетический гормон, сходный с эстрогеном, называется диэтилстилбестрол. В течение ряда лет он широко использовался для предотвращения выкидышей, но были получены свидетельства того, что воздействие этого вещества на плод может приводить к изменениям в развитии мозга. Мужчины, которые подвергались таким пренатальным воздействиям, демонстрировали меньшую разделенность функций между полушариями, так же как и снижение пространственных способностей по сравнению со своими братьями, избежавшими подобного влияния. Оба эти эффекта могут представлять собой феминизацию или демаскулинизацию плода, поскольку мужчинам в целом свойственны большая разделенность функций между полушариями и лучшие пространственные способности, чем женщинам. Мальчики, подвергшиеся влиянию диэтилстилбестрола, в других исследованиях оценивались как менее уверенные и менее агрессивные, чем мальчики контрольной группы (Reinisch & Sanders , 1992), В ряде работ также предполагалось, что воздействие диэтилстилбестрола на женщин может приводить к маскулинизации их черт, хотя остается много неясного в том, что касается влияния этого синтетического гормона на женщин (Hines & Collaer , 1993; LishetaL , 1992).

Врожденнная гиперплазия надпочечников. Иногда врожденную гиперплазию надпочечников называют андрогенитальным синдромом. Она представляет собой генетическое нарушение, которое приводит к накоплению андрогенных гормонов у плода или младенца. Генетические девочки, рожденные с этим нарушением, часто имеют маскулинизированные гениталии и могут подвергаться хирургическому вмешательству, призванному придать их половым органам более «женский» вид. Есть указание, что девочки с этим синдромом, как правило, предпочитают игрушки и виды деятельности, считающиеся более мужскими (Berebaum & Hines , 1992), ведут себя сходно с мальчиками и сами воспринимают себя как «сорванцов» (Slijper et ai ., 1992), а также демонстрируют больше типично мужских черт, чем их сестры (Dittman , Kappes , & Kappes , 1993).

Также есть ряд данных, что способности к визуальной ориентации в пространстве, в норме лучше развитые у мальчиков, повышены у девочек с врожденной адренальной гиперплазией. Высказывалось предположение, что именно это обстоятельство, а не врожденные особенности, вызванные гормональными влияниями, может иметь естественным следствием предпочтение игр с игрушками для мальчиков. Напротив, мальчики, которые сталкивались с пониженным уровнем андрогенов в ходе своего развития, как представляется, проявляют сравнительно ослабленные способности к визуальной ориентации в пространстве.

Исследования, посвященные влиянию подобных нарушений на последующее поведение, иногда приносят противоречивые данные, и для выяснения вопроса еще предстоит проделать значительную работу (Hines & Collaer , 1993; Levy & Heller , 1992; Money , 1994).

Синдром нечувствительности к андрогенам. Как объяснялось ранее в этой главе, секреция гормонов зародышевыми половыми железами необходима для формирования мужских гениталий и возможного подавления женских половых структур. Существует довольно редкое генетическое нарушение, называемое синдромом нечувствительности к андрогенам, при котором клетки развивающегося организма генетических мужчин (XY ) не способны к нормальной реакции на тестостерон, секретируемый яичками плода. В результате вместо мужских органов образуются нормально выглядящие женские гениталии, но внутренние женские органы остаются в недоразвитом состоянии. В период полового созревания формируется женская грудь. Также возможно наличие короткого вагинального канала, но, поскольку матка отсутствует, никогда не происходит менструаций. Эти дети с рождения воспитываются как девочки, так как анатомически они выглядят таковыми, и вполне может случиться, что существование каких-то нарушений диагностируется только в связи с не наступлением менструаций (Money , 1994).

Исследования на некоторых генетических мужчинах, которые были воспитаны как девочки и к которым относились как к женщинам, показали, что такие люди проявляют традиционно женские черты, в том числе предпочитают домоводство карьере и в детстве играют с куклами. Как правило, они сообщают, что хотят иметь сексуального партнера-мужчину и мечтают о создании семьи. Ученые предположили, что в случае синдрома нечувствительности к андрогенам неэффективность последних в ходе внутриутробного развития этих генетических мужчин не только приводит к феминизации их гениталий, но и предотвращает любую маскулинизацию их мозга. Это может создавать условия, ведущие к недвусмысленно женскому поведению в последующей жизни (Hines & Collaer , 1993; Money , 1994). Конечно, при этом необходимо отметить, что процессы социализации в ходе воспитания таких детей как девочек также способствуют формированию этих традиционно женских черт. Имеются данные клинического исследования о том, что девочки с таким синдромом с трудом адаптируются к своему бесплодию и что хирургическая процедура, направленная на увеличение размеров влагалища, может приводить к чувству неполноценности. Эффективная психологическая помощь детям с такими нарушениями и их родителям чрезвычайно важна (Slijper etal ., 1994).

Синдром нехватки дигидротестостерона. Есть еще одно нарушение, позволяющее взглянуть на роль гормонов и социализации в формировании гендерной идентичности под новым углом зрения. Это генетическое нарушение, при котором у генетических мужчин отсутствует фермент дигидротестостерон, необходимый для нормального развития у плода мужских наружных половых органов.

Мальчики с синдромом нехватки дигидротестостерона рождаются с неопущенными яичками и с недоразвитым пенисом, который ошибочно может быть принят за клитор, в то время как внутренние половые органы развиты нормально. Иногда имеется частично сформированное влагалище, а мошонка может быть сложена таким образом, что напоминает половые губы. Исследователи обнаружили в Доминиканской республике 18 генетических мужчин, пол которых при рождении был ошибочно определен как женский и которые были воспитаны как девочки (Imperato - McGinleyet al ., 1982). В период полового созревания у этих детей неожиданно стали проявляться мужские вторичные половые признаки, в том числе увеличение мышечной массы, понижение тембра голоса и увеличение пениса. Не произошло увеличения груди или развития каких-либо других женских признаков. Эти девочки-становящиеся-мальчиками подвергались множеству насмешек в своих краях. Шестнадцать из них в конце концов усвоили мужские поведенческие паттерны и, видимо, проявляли сексуальный интерес к женщинам. Эти факты были объяснены на основе следующей гипотезы. Поскольку в период внутриутробного развития зародышевые гонады этих мальчиков, скорее всего, секретировали тестостерон, а нарушение затронуло только формирование наружных половых органов, то это позволило детям легче перейти к мужской гендерной идентичности и мужской гендерной роли.

Другими словами, тестостерон может оказывать какого-либо рода маскулинизирующие влияния в пренатальный период на формирование и свойства мозга. Но некоторые оспаривают этот вывод, предполагая вместо этого, что социальное давление вполне может приводить к выбору мужского поведения, более приемлемого с точки зрения традиционных культур. Был зарегистрирован подобный случай врожденного синдрома нехватки дигидротестостерона у пяти мужчин на Новой Гвинее. Они тоже воспитывались как девочки, пока в период полового созревания у них не стали проявляться мужские признаки, и они начали вести мужской образ жизни. Поскольку они жили в обществе, где доминирующее положение занимали мужчины, идентификация в качестве мужчины, а не женщины, означала повышение социального статуса (Herdt & Davidson , 1988).

Гормоны и поведение

Мы только начинаем приходить к пониманию тех воздействий, которые гормоны оказывают на человеческий мозг в пренатальный период. Нет никакого сомнения в том, что обучение после рождения является ключевым фактором, определяющим многое из того, что называется мужским или женским поведением, а также в том, что мнение относительно уместности того или иного поведения для девочек и мальчиков формируется обществом (Levy & Heller , 1992). Можно допустить существование эффекта умножения, когда биологические и социальные факторы действуют, поочередно взаимно усиливая друг друга по мере того, как человек взрослеет. При рождении наблюдается относительно немного заметных отличий в поведении между полами. Все больше и больше взаимодействуя со своим окружением, дети усваивают определенные роли, а затем при половом созревании гормональные факторы снова вызывают значительные сдвиги в половой дифференциации, еще более увеличивая различая между женщинами и мужчинами. Еще предстоит выяснить, в какой степени воздействия со стороны хромосом и гормонов в пренатальный период способны предопределять склонность младенца к конкретным типам поведения и какое именно поведение врожденно оказывается составной частью маскулинности или фемининности.

Недавно внимание было привлечено к роли гипоталамуса, гипофиза и гонад и к их взаимодействию на различных стадиях развития. Был сделан ряд предположений о том, что различия в нейроэндокринной системе также способны влиять на сексуальную ориентацию и поведение (Hines & Collaer , 1993; Swaab & Gofman , 1995; Ward , 1992). Никакое поведение не является исключительно мужским или исключительно женским, кроме репродуктивного. Хотя все типы поведения встречаются в некоторой пропорции у всех людей, порог для проявления конкретного типа поведения может быть ниже либо у мужчин, либо у женщин. Это может означать, что комбинация дородовых гормональных воздействий и послеродовых факторов может приводить к более частому проявлению того или иного поведения у одного из полов. Согласно такой гипотезе, порог для проявления агрессии, например, может быть ниже для мужчин, чем для женщин. Однако одновременно звучат утверждения, что биологические теории, касающиеся различий в поведении между мужчинами и женщинами, опираются на результаты исследований, далеких от того, чтобы быть объективными или тщательно проконтролированными.

Заявлялось, что в действительности работы, положенные в основу таких теорий, во многом проникнуты соответствующими системами общественных и политических Ценностей, что приводит к возникновению множества гендерных мифов (Fausto - Sterling , 1992).

Может оказаться, что пренатальные факторы подготавливает условия для последующего формирования гендерной идентичности и гендерной роли.

Факторы младенчества и детства

Определение пола при рождении. За исключением случаев рождения детей с неясно выраженными половыми органами, при рождении младенцев обычно не возникает трудностей с определением их пола. Мимолетного взгляда на гениталии достаточно, чтобы определить, отнести ли новорожденного к мальчикам или девочкам. Как только кто-нибудь объявляет «Мальчик!» или «Девочка!», запускаются социальные механизмы, которые впоследствии будут помогать формированию гендерной идентичности взрослого человека.

Воспитание ребенка в качестве мальчика или девочки. Большинство специалистов полагает, что мальчики и девочки в процессе воспитания подвергаются разному обращению, что получило название дифференцирующей социализации. В каждом обществе от мужчин и женщин ожидается соответствие неким предписанным ролям, и в каждом обществе, как правило, мужчины и женщины обладают довольно согласованными представлениями об этих ожиданиях, нравятся они им или нет (Best & Williams , 1993). Например, сразу же после определения пола розовый и голубой цвета могут быть использованы как отличительный признак, соответствующий названному полу, а о ребенке будут говорить «он» или «она». Также предполагается, что с девочками будут обращаться нежнее и в более опекающем стиле, а с мальчиками - жестче, поощряя их на независимое поведение. Есть свидетельства того, что физические наказания чаще применяются к мальчикам, чем к девочкам.

Тем не менее в обзорах научной литературы по теме дифференцирующей социализации приводятся разные выводы о степени различий в обращении родителей со своими сыновьями и дочерьми. Некоторые аналитические работы указывают на значительные отличия, в других же обнаруживаются лишь минимальные свидетельства несходства в родительских методах по отношению к мальчикам и девочкам (Jacklin & Reynolds , 1993; Lytton & Romney , 1991).

Представление ребенка о своем теле. Подрастая, дети подвергаются дальнейшей социализации и усваивают поведенческие паттерны, которые считаются уместными для их пола. По мере того как ребенок все больше и больше осознает себя, он начинает реагировать на воздействия со стороны окружающих его людей и становится носителем различимой Я-концепции, включающей представление о себе как о мальчике или девочке. Постепенно ребенок все явственнее осознает пол своего тела, наличие у себя мужских или женских половых органов, и определяет их как часть своей сексуальной природы. Все эти факторы ведут к развитию первичной гендерной идентично с т и. На самом деле эта гендерная идентичность устанавливается так рано, что, за немногими исключениями, любая попытка переоценки пола (в случае неправильного его определения при рождении) оказывается психологически очень трудной уже после 18-20 месяцев жизни.

Определения

ДИФФЕРЕНЦИРУЮЩАЯ СОЦИАЛИЗАЦИЯ - различия в отношении к мальчикам и к девочкам в процессе их воспитания .

ЭФФЕКТ УМНОЖЕНИЯ - взаимно усиливающее сочетание наследственных и социальных факторов в процессе развития человека .

СИКДРОМ НЕХВАТКИ ДИГИДРОТЕСТОСТЕРОНА - состояние, при котором генетически мужской организм обладает недоразвитыми половыми органами и может быть при рождении определен как девочка. Однако в период полового созревания у таких людей начинают формироваться мужские вторичные половые признаки и, как правило, проявляются мужские поведенческие характеристики .

ВРОЖДЕННАЯ ГИПЕРПЛАЗИЯ НАДПОЧЕЧНИКОВ - генетическое нарушение, которое вызывает маскулинизацию генетических женщин, проявляющуюся также и в поведении .

СИНДРОМ НЕЧУВСТВИТЕЛЬНОСТИ К АНДРОГЕНАМ - состояние развивающегося плода, при котором его клетки не реагируют на андрогены, что приводит к развитию женских наружных половых органов у генетических мужчин (XY ). В дальнейшем также наблюдается феминизация поведенческих характеристик .

H - Y -АНТИГЕН - вещество, вырабатываемое в эмбрионе в случае наличия Y - xpo мосомы. Играет важную роль е превращении зародышевых гонад в яички .

АНТИМЮЛЛЕРОВ ГОРМОН - гормон, секретируемый яичками плода и предотвращающий развитие женских половых структур из мюллеровых протоков .

ВНУТРИУТРОБНАЯ АНДРОГЕНИЗАЦИЯ - состояние, при котором прием гормонов, прописанных в период беременности, вызывает маскулинизацию половых органов генетически женского (XX ) плода и, возможно, влияет на последующие поведенческие характеристики, даже если ребенок воспитывается как девочка .