Неодимовые магниты свойства и характеристики. Сила сцепления и притяжения неодимового магнита

Существует два основных типа магнитов: постоянные и электромагниты. Определить, что же такое постоянный магнит, можно на основании главного его свойства. Постоянный магнит получил свое название за то, что его магнетизм всегда «включен». Он генерирует собственное магнитное поле, в отличие от электромагнита, сделанного из проволоки, обернутой вокруг железного сердечника, и требующего протекания тока для создания магнитного поля.

История изучения магнитных свойств

Столетия назад люди открыли, что некоторые типы горных пород обладают оригинальными особенностями: притягиваются к железным предметам. Упоминание о магнетите встречается в древних исторических летописях: больше двух тысячелетий назад в европейских и намного ранее в восточноазиатских. Сначала он оценивался как любопытный предмет.

Позже магнетит стали использовать для навигации, обнаружив, что он стремится занять определенное положение, когда ему предоставлена свобода вращения. Научное исследование, проведенное П. Перегрином в 13-м веке, показало, что сталь может приобрести эти особенности после потирания магнетитом.

У намагниченных предметов было два полюса: «северный» и «южный», относительно магнитного поля Земли. Как обнаружил Перегрин, изоляция одного из полюсов не представлялась возможной, если разрезать осколок магнетита надвое, – каждый отдельный фрагмент имел в результате собственную пару полюсов.

В соответствии с сегодняшними представлениями магнитное поле постоянных магнитов – это результирующая ориентация электронов в едином направлении. Только некоторые разновидности материалов взаимодействуют с магнитными полями, значительно меньшее их количество способно сохранять постоянное МП.

Свойства постоянных магнитов

Основными свойствами постоянных магнитов и создаваемого ими поля являются:

  • существование двух полюсов;
  • противоположные полюса притягиваются, а одноименные отталкиваются (как положительные и отрицательные заряды);
  • магнитная сила незаметно распространяется в пространстве и проходит через объекты (бумага, дерево);
  • наблюдается усиление интенсивности МП вблизи полюсов.

Постоянные магниты поддерживают МП без внешней помощи. Материалы в зависимости от магнитных свойств делятся на основные виды:

  • ферромагнетики – легко намагничивающиеся;
  • парамагнетики – намагничиваются с большим трудом;
  • диамагнетики – склонны отражать внешнее МП путем намагничивания в противоположном направлении.

Важно! Магнито-мягкие материалы, такие как сталь, проводят магнетизм при прикреплении к магниту, но это прекращается при его удалении. Постоянные магниты изготавливаются из магнито-твердых материалов.

Как работает постоянный магнит

Его работа связана с атомной структурой. Все ферромагнетики создают естественное, хотя и слабое, МП, благодаря электронам, окружающим ядра атомов. Эти группы атомов способны ориентироваться в едином направлении и называются магнитными доменами. Каждый домен обладает двумя полюсами: северным и южным. Когда ферромагнитный материал не намагничен, его области ориентированы в случайных направлениях, а их МП компенсируют друг друга.

Чтобы создать постоянные магниты, ферромагнетики нагреваются при очень высоких температурах и подвергаются воздействию сильного внешнего МП. Это приводит к тому, что отдельные магнитные домены внутри материала начинают ориентироваться по направлению внешнего МП до тех пор, пока все домены не выровняются, достигнув точки магнитного насыщения. Затем материал охлаждают, и выровненные домены блокируются в нужном положении. После удаления внешнего МП магнито-твердые материалы будут удерживать большую часть своих доменов, создавая постоянный магнит.

Характеристики постоянного магнита

  1. Магнитную силу характеризует остаточная магнитная индукция. Обозначается Br. Это та сила, которая остается после исчезновения внешнего МП. Измеряется в тестах (Тл) или гауссах (Гс);
  2. Коэрцитивность или сопротивление размагничиванию – Нс. Измеряется в А/м. Показывает, какова должна быть напряженность внешнего МП для того, чтобы размагнитить материал;
  3. Максимальная энергия – BHmax. Рассчитывается путем умножения остаточной магнитной силы Br и коэрцитивности Нс. Измеряется в МГсЭ (мегагауссэрстед);
  4. Коэффициент температуры остаточной магнитной силы – Тс of Br. Характеризует зависимость Br от температурного значения;
  5. Tmax – наивысшее значение температуры, при достижении которого постоянные магниты утрачивают свойства с возможностью обратного восстановления;
  6. Tcur – наивысшее значение температуры, когда магнитный материал безвозвратно утрачивает свойства. Этот показатель называется температурой Кюри.

Индивидуальные характеристики магнита изменяются в зависимости от температуры. При разных значениях температуры разные типы магнитных материалов работают по-разному.

Важно! Все постоянные магниты теряют процент магнетизма при подъеме температуры, но с разной скоростью, зависящей от их типа.

Типы постоянных магнитов

Всего существует пять типов постоянных магнитов, каждый из которых изготовляется по-разному на основе материалов с отличающимися свойствами:

  • альнико;
  • ферриты;
  • редкоземельные SmCo на основе кобальта и самария;
  • неодимовые;
  • полимерные.

Альнико

Это постоянные магниты, состоящие в основном из комбинации алюминия, никеля и кобальта, но могут также включать медь, железо и титан. Благодаря свойствам магнитов альнико, они могут работать при самых высоких температурах, сохраняя свой магнетизм, однако они легче размагничиваются, чем ферритовые или редкоземельные SmCo. Они были первыми серийными постоянными магнитами, заменяющими намагниченные металлы и дорогие электромагниты.

Применение:

  • электродвигатели;
  • термическая обработка;
  • подшипники;
  • аэрокосмические аппараты;
  • военная техника;
  • высокотемпературное погрузо-разгрузочное оборудование;
  • микрофоны.

Ферриты

Для изготовления ферритовых магнитов, известных еще как керамические, применяются карбонат стронция и оксид железа, в соотношении 10/90. Оба материала в изобилии и экономически доступны.

Из-за низких издержек производства, устойчивости к нагреву (до 250°C) и коррозии ферритовые магниты – одни из самых популярных для повседневного применения. Они имеют большую внутреннюю коэрцитивность, чем альнико, но меньшую магнитную силу, чем неодимовые аналоги.

Применение:

  • звуковые колонки;
  • охранные системы;
  • большие пластинчатые магниты для удаления загрязнения железом технологических линий;
  • электродвигатели и генераторы;
  • медицинские инструменты;
  • подъемные магниты;
  • морские поисковые магниты;
  • устройства, основанные на работе вихревых токов;
  • выключатели и реле;
  • тормоза.

Редкоземельные магниты SmCo

Магниты из кобальта и самария работают в широком температурном диапазоне, имеют высокие температурные коэффициенты и высокую коррозионную стойкость. Этот вид сохраняет магнитные свойства даже при температурах ниже абсолютного нуля, что делает их популярными для использования в криогенных установках.

Применение:

  • турботехника;
  • насосные муфты;
  • влажные среды;
  • высокотемпературные устройства;
  • миниатюрные гоночные автомобили с электроприводом;
  • радиоэлектронные устройства для работы в критических условиях.

Неодимовые магниты

Сильнейшие существующие магниты, состоящие из сплава неодима, железа и бора. Благодаря их огромной силе, даже миниатюрные магниты эффективны. Это обеспечивает универсальность использования. Каждый человек постоянно находится рядом с одним из неодимовых магнитов. Они есть, например, в смартфоне. Изготовление электродвигателей, медтехника, радиоэлектроника опираются на сверхпрочные неодимовые магниты. Из-за их сверхпрочности, огромной магнитной силы и стойкости к размагничиванию возможно изготовление образцов до 1 мм.

Применение:

  • жесткие диски;
  • звуковоспроизводящие устройства – микрофоны, акустические датчики, наушники, громкоговорители;
  • протезы;
  • насосы с магнитной связью;
  • дверные доводчики;
  • двигатели и генераторы;
  • замки на ювелирных изделиях;
  • сканеры МРТ;
  • магнитотерапия;
  • датчики ABS в автомобилях;
  • подъемное оборудование;
  • магнитные сепараторы;
  • герконовые переключатели и т. д.

Гибкие магниты содержат магнитные частицы, находящиеся внутри полимерного связующего. Используются для уникальных устройств, где невозможна установка твердых аналогов.

Применение:

  • дисплейная реклама – быстрая фиксация и быстрое удаление на выставках и мероприятиях;
  • знаки транспортных средств, учебные школьные панели, логотипы компаний;
  • игрушки, головоломки и игры;
  • маскирование поверхностей для окраски;
  • календари и магнитные закладки;
  • оконные и дверные уплотнения.

Большинство постоянных магнитов являются хрупкими и не должны использоваться в качестве структурных элементов. Они изготавливаются в стандартных формах: кольца, стержни, диски, и индивидуальных: трапеции, дуги и др. Неодимовые магниты из-за высокого содержания железа подвержены коррозии, поэтому покрываются сверху никелем, нержавеющей сталью, тефлоном, титаном, каучуком и другими материалами.

Видео

Еще в древние времена люди обнаружили уникальные свойства определенных камней - притягивание металла. В наше время мы часто сталкиваемся с предметами, которые обладают этими качествами. Что такое магнит? В чем его сила? Об этом мы расскажем в этой статье.

Примером временного магнита являются скрепки, кнопки, гвозди, нож и другие предметы обихода, изготовленные из железа. Их сила в том, что они притягиваются к постоянному магниту, а при исчезновении магнитного поля, теряют свое свойство.

Полем электромагнита можно управлять с помощью электрического тока. Как это происходит ? Провод, витками намотанный на железный сердечник, при подаче и изменении величины тока меняет силу магнитного поля и его полярность.

Типы постоянных магнитов

Ферритовые магниты являются самыми известными и активно используемыми в быту. Этот материал черного цвета может использоваться в качестве крепежей различных предметов, например, для плакатов, для настенных досок, используемых в офисе или школе. Они не теряют своих свойств притяжения при температуре не ниже 250 о С.

Альнико - магнит, состоящий из сплава алюминия, никеля и кобальта. Это дало ему такое название. Очень устойчив к высоким температурам и может применяться при 550 о С. Материал отличается легкостью, но полностью теряет свои свойства, попадая под действие более сильного магнитного поля. Используется в основном в научной отрасли.

Самариевые магнитные сплавы - это материал с высокими показателями. Надежность его свойств позволяет использовать материал в военных разработках. Он устойчив к агрессивной среде, высокой температуре, окислению и коррозии.

Что такое неодимовый магнит? Это самый популярный сплав железа, бора и неодима. Его еще называют супермагнитом, так как он имеет мощнейшее магнитное поле с высокой коэрцитивной силой. Соблюдая определенные условия во время эксплуатации, неодимовый магнит способен сохранить свои свойства на протяжении 100 лет.

Использование неодимовых магнитов

Стоит подробно рассмотреть, что такое неодимовый магнит? Это материал, который способен фиксировать потребление воды, электричества и газа в счетчиках, да и не только. Этот вид магнита относится к постоянным и редкоземельным материалам. Он устойчив перед полей других сплавов и не подвержен размагничиванию.

Изделия из неодима используют в медицинских и промышленных отраслях. Также в бытовых условиях их применяют для крепления портьер, элементов декора, сувениров. Они применяются в поисковых приборах и в электронике.

Для продления срока службы магниты такого типа покрывают цинком или никелем. В первом случае напыление более надежное, так как устойчиво к агрессивным средствам и выдерживает температуру выше 100 о С. Сила магнита зависит от его формы, размера и количества неодима, входящего в состав сплава.

Применение ферритовых магнитов

Ферриты считаются самыми популярными магнитами среди постоянных видов. Благодаря стронцию, входящему в состав, материал не поддается коррозии. Так что это такое - ферритовый магнит? Где он применяется? Этот сплав довольно хрупок. Поэтому его еще называют керамическим. Применяется ферритовый магнит в автомобилестроении и промышленности. Используется в различной технике и электроприборах, а также бытовых установках, генераторах, системах акустики. При производстве автомобилей магниты используют в системах охлаждения, стеклоподъемниках и вентиляторах.

Назначение феррита - защитить технику от внешних помех и не допустить порчи сигнала, получаемого по кабелю. Благодаря этому используют при производстве навигаторов, мониторов, принтеров и другого оборудования, где важно получить чистый сигнал или изображение.

Магнитотерапия

Нередко применяется процедура называется магнитотерапия и проводится в лечебных целях. Действие этого метода заключается в том, чтобы повлиять на организм пациента с помощью магнитных полей, находящихся под низкочастотным переменным или постоянным током. Этот метод лечения помогает избавиться от многих заболеваний, снять боли, укрепить иммунную систему, улучшить кровоток.

Считается, что болезни порождаются нарушением магнитного поля человека. Благодаря физиотерапии организм приходит в норму и общее состояние улучшается.

Из данной статьи вы узнали, что такое магнит, а также изучили его свойства и сферы применения.

Данная страница пока только на русском языке.

1. Магнетизм

2. Магнитное поле

3. Постоянный магнит

1. Магнетизм - форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля. , атомов и молекул, а в макроскопическом масштабе - электрический ток и постоянные магниты. Наряду с электричеством, магнетизм - одно из проявлений электромагнитного взаимодействия. Основной характеристикой магнитного поля является вектор индукции, совпадающий в вакууме с вектором напряженности магнитного поля.

Магнитный момент, магнитный дипольный момент - основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - спина. Магнитный момент измеряется в А*м2 или Дж/Тл (СИ).

Формулы для вычисления магнитного момента
В случае плоского контура с электрическим током магнитный момент вычисляется как
, где I - сила тока в контуре, S - площадь контура, n - единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.


где r - радиус-вектор проведенный из начала координат до элемента длины контура dl


где j - плотность тока в элементе объёма dV.


2. Магнитное поле - составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции B . В СИ магнитная индукция измеряется в Тесла (Тл).

Магнитное поле - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Можно также рассматривать магнитное поле, как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитных волны.

Проявление магнитного поля
Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к вектору v

где a - угол между направлением вектора скорости частицы v v и направлением вектора магнитного поля B

Также магнитное поле действует на проводник с током. Сила, действующая на проводник будет называться силой Ампера. Эта сила складывается из сил, действущих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов
Наиболее часто встречаемое проявление магнитного поля - взаимодействие двух магнитов: подобные полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами, как взаимодействие между двумя монополями, но эта идея не приводит к правильному описанию явления.

Правильнее будет сказать, что на магнитный диполь помещённый в неоднородное поле действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем.

Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле:

Сила, действующую на магнит со стороны неоднородного магнитного поля, может быть также определенна суммированием всех сил, действующих на элементарные диполи, составляющие магнит.

Энергию магнитного поля можно найти по формуле:

где: Ф - магнитный поток, I - ток, L - индуктивность катушки или витка с током.

3. Постоянный магнит - изделие различной формы из жёсткого материала с высокой остаточной магнитной индукцией, сохраняющие состояние намагниченности в течение длительного времени. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Свойства магнита определяются характеристиками размагничивающего участка петли магнитного гистерезиса материала магнита: чем выше остаточная индукция Br и коэрцитивная сила Hc, тем выше намагниченность и стабильность магнита.

Индукция постоянного магнита Bd не может превышать Br: равенство Bd = Br возможно лишь в том случае, если магнит представляет собой замкнутый магнитопровод, то есть не имеет воздушного промежутка, однако постоянные магниты, как правило, используются для создания магнитного поля в воздушном (или заполненном другой средой) зазоре, в этом случае Bd
Для производства постоянных магнитов используются четыре основных класса материалов:

    керамические (ферриты)

    неодим-железо-бор (Nd-Fe-B, NdFeB, NIB)

    самарий-кобальт (SmCo)

    альнико (Alnico)

Наиболее широко распространены ферритовые магниты.

Для применений при обычных температурах самые сильные постоянные магниты делаются из сплавов, содержащих неодим. Они используются в таких областях, как магнитно-резонансная томография, сервоприводы жёстких дисков и создание высококачественных динамиков.

Постоянные магниты на уроках физики обычно демонстрируются в виде подковы, полюса которой окрашены в синий и красный цвет.

Отдельные шарики и цилиндры с сильными магнитными свойствами используются в качестве хай-тек украшений/игрушек - они без дополнительных креплений собираются в цепочки, которые можно носить как браслет. Так же в продаже есть конструкторы, состоящие из набора цилиндрических магнитных палочек и стальных шариков. Из них можно собирать множество конструкций, в основном фермового типа.

Кроме того, существуют гибкие плоские магниты на полимерной основе с магнитными добавками, которые используются например, для изготовления декоративных магнитов на холодильники, оформительских и прочих работ. Выпускаются в виде лент и листов, обычно с нанесённым клеевым слоем и плёнкой, его защищающей. Магнитное поле у такого плоского магнита полосатое - с шагом около двух миллиметров по всей поверхности чередуются положительные и отрицательные полюса.

Сила притяжения постоянного магнита (или мощность постоянного магнита) зависит от множества параметров таких как.

Неодимовые магниты получили свое название из-за присутствия в своем составе редкоземельного металла Неодим (Nd). В состав материала магнита также входит железо (Fe) и небольшое количество бора (B).
Что обозначают буквы и цифры в классах неодимовых магнитов?
Неодимовые магниты делят на классы, которые обозначаются буквами и числами (например, N35), в которых и заложена основная информация о магните. Ниже приведена стандартная номенклатурная таблица характеристик неодимовых магнитов (в левом столбце указаны классы).
В таблице все численные величины представлены в двух единицах измерения. Первая, без скобок – это величина измерения в системе СИ (эта та система, в которой работает наша страна), а вторая (указана в скобках), – это измерения в международной системе СГСЕ (европейские стандарты). Для удобства в таблице указаны обе единицы измерения.
Таблица характеристик неодимовых магнитов
По правому столбцу таблицы видно основное классовое отличие магнитов – это их рабочая температура использования, то есть та допустимая максимальная температура, превышая которую магнит начинает терять свои магнитные свойства. Таким образом, на температурный диапазон использования магнита указывает буквенная часть его маркировки (левый столбец).

Магниты марки:

  • N (Normal)– могут применяться при нормальных температурах, то есть до 80 градусов Цельсия;
  • M (Medium) – могут применяться при повышенных температурах, то есть до 100 градусов Цельсия;
  • H (High) – могут применяться при высоких температурах, до 120 градусов Цельсия;
  • SH (Super High) – могут применяться при температурах до 150 градусов Цельсия;
  • UH (Ultra High) – могут применяться при температурах до 180 градусов Цельсия;
  • EH (Extra High) – могут применяться при температурах до 200 градусов Цельсия.

Стоит оговориться, что отрицательные температуры не оказывают влияния на магнитные свойства для большинства магнитов.
Цифры, указанные в обозначении класса магнитов: N30, 33M, 35H, 38SH, 40UH и т.д., указывают на Магнитную Энергию (четвертый столбец таблицы), измеряется в килоДжоуль на кубический метр. Этот критерий магнитов отвечает за их мощность или, так называемое, «усилие на отрыв», то есть сила, которую необходимо приложить к магниту, чтобы его «оторвать» от поверхности. Необходимо понимать, что поверхность (стальной лист) должен быть идеально ровным, а приложенная сила должна быть перпендикулярной к листу. Это, так называемые, идеальные или теоритические условия. Совершенно понятно, что чем выше цифровое обозначение магнита, тем выше его усилие на отрыв.
Сила на отрыв магнита
Но, кроме того, «сила на отрыв» зависит не только от физических характеристик магнита, но и от его размера и веса. Например, магнит 25*20 мм легче оторвать от стального листа, чем магнит 40*5 мм, так как площадь соприкосновения у второго магнита больше (25 мм против 40мм). Но линии магнитного поля, если их визуализировать, распространяются у первого магнита (25*20 мм) «дальше», значит, и «цепляется» за стальной лист он лучше.

Марка/

Класс

Остаточная магнитная
индукция, миллиТесла
(КилоГаусс)
Коэрцитивная сила,
КилоАмпер/метр
(КилоЭрстед)
Магнитная энергия,
килоДжоуль/м3
(МегаГаусс-Эрстед)

Рабочая температура,
градус Цельсия

N35 1170-1220 (11,7-12,2) ≥955 (≥12) 263-287 (33-36) 80
N38 1220-1250 (12,2-12,5) ≥955 (≥12) 287-310 (36-39) 80
N40 1250-1280 (12,5-12,8) ≥955 (≥12) 302-326 (38-41) 80
N42 1280-1320 (12,8-13,2) ≥955 (≥12) 318-342 (40-43) 80
N45 1320-1380 (13,2-13,8) ≥955 (≥12) 342-366 (43-46) 80
N48 1380-1420 (13,8-14,2) ≥876 (≥12) 366-390 (46-49) 80
N50 1400-1450 (14,0-14,5) ≥876 (≥12) 382-406 (48-51) 80
N52 1430-1480 (14,3-14,8) ≥876 (≥12) 398-422 (50-53) 80
33M 1130-1170 (11,3-11,7) ≥1114 (≥14) 247-263 (31-33) 100
35M 1170-1220 (11,7-12,2) ≥1114 (≥14) 263-287 (33-36) 100
38M 1220-1250 (12,2-12,5) ≥1114 (≥14) 287-310 (36-39) 100
40M 1250-1280 (12,5-12,8) ≥1114 (≥14) 302-326 (38-41) 100
42M 1280-1320 (12,8-13,2) ≥1114 (≥14) 318-342 (40-43) 100
45M 1320-1380 (13,2-13,8) ≥1114 (≥14) 342-366 (43-46) 100
48M 1380-1420 (13,8-14,3) ≥1114 (≥14) 366-390 (46-49) 100
50M 1400-1450 (14,0-14,5) ≥1114 (≥14) 382-406 (48-51) 100
30H 1080-1130 (10,8-11,3) ≥1353 (≥17) 223-247 (28-31) 120
33H 1130-1170 (11,3-11,7) ≥1353 (≥17) 247-271 (31-34) 120
35H 1170-1220 (11,7-12,2) ≥1353 (≥17) 263-287 (33-36) 120
38H 1220-1250 (12,2-12,5) ≥1353 (≥17) 287-310 (36-39) 120
40H 1250-1280 (12,5-12,8) ≥1353 (≥17) 302-326 (38-41) 120
42H 1280-1320 (12,8-13,2) ≥1353 (≥17) 318-342 (40-43) 120
45H 1320-1380 (13,2-13,8) ≥1353 (≥17) 326-358 (43-46) 120
48H 1380-1420 (13,8-14,3) ≥1353 (≥17) 366-390 (46-49) 120
30SH 1080-1130 (10,8-11,3) ≥1592 (≥20) 233-247 (28-31) 150
33SH 1130-1170 (11,3-11,7) ≥1592 (≥20) 247-271 (31-34) 150
35SH 1170-1220 (11,7-12,2) ≥1592 (≥20) 263-287 (33-36) 150
38SH 1220-1250 (12,2-12,5) ≥1592 (≥20) 287-310 (36-39) 150
40SH 1240-1280 (12,4-12,8) ≥1592 (≥20) 302-326 (38-41) 150
42SH 1280-1320 (12,8-13,2) ≥1592 (≥20) 318-342 (40-43) 150
45SH 1320-1380 (13,2-13,8) ≥1592 (≥20) 342-366 (43-46) 150
28UH 1020-1080 (10,2-10,8) ≥1990 (≥25) 207-231 (26-29) 180
30UH 1080-1130 (10,8-11,3) ≥1990 (≥25) 223-247 (28-31) 180
33UH 1130-1170 (11,3-11,7) ≥1990 (≥25) 247-271 (31-34) 180
35UH 1180-1220 (11,7-12,2) ≥1990 (≥25) 263-287 (33-36) 180
38UH 1220-1250 (12,2-12,5) ≥1990 (≥25) 287-310 (36-39) 180
40UH 1240-1280 (12,4-12,8) ≥1990 (≥25) 302-326 (38-41) 180
28EH 1040-1090 (10,4-10,9) ≥2388 (≥30) 207-231 (26-29) 200
30EH 1080-1130 (10,8-11,3) ≥2388 (≥30) 233-247 (28-31) 200
33EH 1130-1170 (11,3-11,7) ≥2388 (≥30) 247-271 (31-34) 200
35EH 1170-1220 (11,7-12,2) ≥2388 (≥30) 263-287 (33-36) 200
38EH 1220-1250 (12,2-12,5) ≥2388 (≥30) 287-310 (36-39) 200

Как сравнить силу магнитов?

Если возникает необходимость сравнить, какой из двух выбранных магнитов сильнее, рекомендуем Вам воспользоваться следующими способами.
1. При одинаковых линейных размерах (точная методика):
Чтобы понять, насколько один магнит сильнее другого, необходимо значение остаточной магнитной индукции одного магнита (второй столбец таблицы) разделить на значение остаточной магнитной индукции другого магнита.

Пример: неодимовый магнит N40 с В=1250 мТ и неодимовый магнит N50 с В=1400 мТ, делим их магнитные индукции и получаем 1400/1250 = 1,12, то есть магнит N50 «сильнее» магнита N40 на 12%, при условии, что линейные размеры магнитов одинаковые.
2. При разных линейных размерах (грубая методика):
Чтобы понять, насколько один магнит сильнее другого, необходимо сравнить их массы.

Пример: магнит 30*10 мм весит примерно 55 грамм, а магнит 25*20 мм весит 76 грамм. Делим их массы 76/55=1,38, то есть магнит 25*20 мм сильнее магнита 30*10 мм примерно на 38%, при условии, что их классы, то есть физические характеристики, одинаковые.
Примеры различных форм магнитов и максимально удерживаемого ими веса* .

Наименование Сила сцепления Цена Купить

Типы магнитов

Существует множество типов магнитов. Рассмотрим их особенности.

Природные магниты (магнитный железняк) образуются при остывании расплавленной лавы, содержащей железо или его окислы, которое намагничивается магнитным полем Земли. Расплавленная лава не обладает магнитными свойствами. Но когда она остывает, крошечные расплавленные частицы железа поворачиваются так, что они приобретают строгую направленность на магнитные полюса Земли и сохраняют ее в затвердевшем железе.

Мы не знаем, как Земля превратилась в магнит, но можем предположить, что магнитное поле Земли создается вращающимся слоем расплавленного железа, находящимся внутри планеты, которая тоже вращается. Найденная в природе магнитная руда содержит, в первую очередь, железо и кислород. Она встречается в изобилии. Искусственные магниты создаются людьми для многих целей, включая лечение и сложные физические эксперименты. Эти магниты имеют различные формы, их параметры могут изменяться в широких пределах.

Тысячелетиями магниты оставались одной из загадок природы. Только природные магниты были доступны долгое время, они использовались в компасах. В XIX веке были изобретены электрические батареи, и это привело к открытию взаимодействия между электрическим током и магнитным полем. Одно открытие вело к следующему.

Наконец окончательно подтвердилось, что два параллельных проводника, по которым пропускали электрический ток, взаимно притягиваются при одинаковом направлении токов, но взаимно отталкиваются, если направления токов будут противоположны.

Оказалось, что если электрический ток пропускать по свернутому в кольцо проводнику, то магнитные поля, созданные каждым его сегментом, суммируются и образуют общее магнитное поле, наиболее мощное в центре кольца. Эти кольца были названы электромагнитами. Затем выяснилось, что можно значительно усилить магнитное поле, если поместить железный сердечник в центр кольца. Сердечник приобретал магнитные свойства в момент включения тока и длительно сохранял их после его выключения. Это открытие оказалось очень важным. Появилась возможность изготавливать искусственные магниты. Открытие вызвало изменение стратегии научных исследований, ускорило применение магнитных приборов в различных целях.

Открытие электромагнитов позволило изготавливать постоянные магниты из сплавов, добавляя различные металлы в железную основу, нагревая смесь до температуры плавления, а затем разливая ее в различные формы. Магниты подвергались предварительному намагничиванию, пока они были в расплавленном состоянии, но позже, остывая и твердея, они теряли магнитные свойства. Поэтому перед продажей их повторно намагничивали при комнатной температуре.

Изготовленные на заводах магниты создают намного более мощное поле, чем природные. Во всех искусственных магнитах железо служит основным исходным материалом. Вокруг ядра атома железа движутся 26 электронов, ориентация орбит некоторых из них может изменяться. Под действием внешнего магнитного поля эти электроны в каждом атоме начинают двигаться по орбитам, одинаково ориентированным по направлению поля в пространстве. Теперь каждый атом создает собственное магнитное поле, поля соседних атомов усиливают друг друга. Когда этот процесс охватывает значительное количество электронов и атомов, железо или сплав на его основе приобретают свойство, которое мы называем магнетизмом.

Независимо от размера, все магниты имеют два полюса: северный и южный. Если большой магнит разделить на части, то каждая из этих частей превратится в самостоятельный магнит с полюсами на концах. Магнитное поле наиболее интенсивно на полюсах, но слабее всего в точке, равноудаленной от полюсов.

Разноименные полюса притягивают друг друга, одноименные – отталкивают. Это свидетельствует о различной природе двух полюсов, а также об их различном терапевтическом эффекте. Основой магнитотерапии являются свойства магнитных полюсов.

Как было установлено, эти полюса по-разному влияют на живые организмы.

Для лечебных целей интенсивность магнитного поля оказалась менее важной, чем правильный выбор полярности. Но как же измеряют параметры магнитов?

Магнит создает вращающую и притягивающую силу, которая действует на некоторые электроны в атомах железа. Эти электроны удерживаются ядрами атомов, они не могут свободно перемещаться. Поэтому весь кусок железа двигается по направлению к магниту. В честь немецкого математика Карла Фридриха Гаусса единица силы притяжения называется гаусс. В этих единицах измеряется сила на поверхности магнита.

Из книги Мистерии Евразии автора Дугин Александр Гельевич

Из книги Чудо исцеления шепотом автора Матушка Стефания

Типы заговоров По осуществлению магические заговоры могут быть как разовыми, так и серийными.Разовый заговор – это магический заговор, который применяется только один раз для достижения и осуществления своей цели.Серийный заговор – это магический заговор, который

Из книги Том 3. Домология автора Вронский Сергей Алексеевич

3.2.6. Смешанные типы Пограничная область Телец/Овен.Изменённый главный принцип: усиление своеволия и своенравия. Повышенный потенциал воли, увеличение энергии.Овен заметно ограничивает способность Тельца приспосабливаться другим людям, вещам, обстоятельствам, но такие

Из книги Красота вашего подсознания. Программируй себя на успех и позитив автора Ангелайт

3.3.6. Смешанные типы Пограничная область Близнецы/ТелецИзменённый главный принцип: больше спокойствия и стабильности, меньше суеты. Этот тип Близнецов более уравновешенный, так как стихия Земли, как правило, действует на стихию Воздуха успокаивающе. Если при этом в знаке

Из книги Энциклопедия хиромантии: Ваша судьба как на ладони автора Макеев А. В.

3.4.6. Смешанные типы Пограничная областьРак/БлизнецыИзменённый главный принцип: усиление раздражительности, возбудимость, нервозность, беспокойство.Этот смешанный тип содержит в себе элементы стихий Воды и Воздуха, что даёт быструю смену чувств и настроений.

Из книги Магия воды. Чудесные исцеления автора Филатова Светлана Владимировна

3.5.6. Смешанные типы Пограничная область Лев/РакИзменённый главный принцип: «приглушённый огонь».Сила воли и энергия такого Льва гораздо меньше, а степень активности, динамика, страсти приглушены и совсем не так ярки, как у «чистого» Льва. Уже не тот размах, не те масштабы,

Из книги Русь эзотерическая автора Манскова Ольга Витальевна

3.6.6. Смешанные типы. Пограничная область Дева/ЛевИзменённый главный принцип: активизация мира чувств.При таком положении Асцендента превосходство интеллекта и расчётливости уже ослаблено. Заметно проявляет себя Львиная суть. Вообще это смешение достаточно

Из книги Жизнь без границ. Концентрация. Медитация автора Жикаренцев Владимир Васильевич

Типы программ Цель программирования подсознания мы обозначили в самом начале – проработка матриц. Нам важно освободить себя от неосознаваемых импульсов нашего подсознания, которые могут принести нам самим вред. Если мы не будем понимать, какое воздействие оказывает на

Из книги Лечебная сила магнита. Секреты индийских мудрецов автора Моханти Ранжит

Типы рук Хиромантия непосредственно связана с расположением звезд планет, поскольку этот способ предсказания будущего основывался на астрологическом принципе, согласно которому, микрокосм человека определяется прежде всего небесными светилами, а его будущее зависит

Из книги Большая книга тайных знаний. Нумерология. Графология. Хиромантия. Астрология. Гадания автора Шварц Теодор

Типы воды Изучением природных вод и их взаимодействия с литосферой и атмосферой занимается гидрология. Предмет исследования данной науки – все известные виды гидросферы, в том числе подземные и почвенные. В гидрологии выделяются 3 главных направления – океанология,

Из книги автора

Глава 17. Отлучение от Магнитов Скоро ожидался вновь большой и общий Магнит, о чём Эльмирой было объявлено всем, кто находился в палаточном городке и у костра. С призывом, чтобы никто из присутствующих далеко не уходил. Многие тут же разбрелись по ближайшим окрестностям -

Из книги автора

ТИПЫ ХАРАКТЕРОВ В свете вышесказанного надо кое-что добавить к информации о типах характеров, которые мы рассматривали в книге «Путь к Свободе. Взгляд в Себя». Напоминаю, что типы характеров человека – это тот поезд, в который вы сели при рождении и в котором будете ехать

Из книги автора

Типы постоянных магнитов Разработано множество типов искусственных магнитов. Впервые людьми были изготовлены постоянные магниты из ковкого железа. По мощности они значительно превосходили природные. Но чистое железо не может длительно сохранять магнитные

Из книги автора

Выбор магнитов Существуют магниты любых форм, размеров и мощностей. Они могут быть круглыми, кольцевыми, серповидными и длинными.Круглые (дисковые) магниты имеют форму таблетки, у которых одна поверхность окрашена в белый цвет (южный полюс), а другая – в желтый (северный

Из книги автора

Виды магнитов и их использование Для лечения используют маломощные и средне-мощные магниты.Обычно более мощными дисковыми магнитами воздействуют на ладони, подошвы ног и конечности. Маломощные керамические магниты используют только на голове, лице, грудной клетке и