Молекулы днк каких клеток. Что такое днк - дезоксирибонуклеиновая кислота

Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.

Еще из школьных учебников мы знаем, что дезоксирибонуклеиновая кислота (ДНК) — универсальный носитель генетической информации и наследственных признаков у всех существующих на Земле организмов. Исключение составляют только некоторые микроорганизмы, например, вирусы — универсальным носителем генетической информации у них является РНК - одноцепочечная рибонуклеиновая кислота.

Строение ДНК-молекулы

Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.

ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

гастроэнтерологиядиагностический комплекс - 5 360 рублей

ТОЛЬКО В МАРТЕэкономия - 15%

1000 рублейснятие ЭКГ с расшифровкой

- 25%первичный
приём врача
терапевта по выходным

980 руб.первичный прием гирудотерапевта

прием терапевта - 1 130 рублей (вместо 1500 рублей)"Только в марте, по субботам и воскресеньям, приём врача- терапевта со скидкой 25% - 1 130 руб., вместо 1 500руб. (диагностические процедуры оплачиваются по прейскуранту)

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

  • Расплетение спирали ДНК и расхождение нитей
  • Присоединение праймеров
  • Образование новой цепи ДНК дочерней нити

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.

Аббревиатура клеточный ДНК многим знакома из школьного курса биологии, но мало кто сможет с легкостью ответить, что это. Лишь смутное представление о наследственности и генетике остается в памяти сразу после окончания учебы. Знание, что такое ДНК, какое влияние оно оказывает на нашу жизнь, порой может оказаться очень нужным.

Молекула ДНК

Биохимики выделяют три типа макромолекул: ДНК, РНК и белки. Дезоксирибонуклеиновая кислота – это биополимер, который несет ответственность за передачу данных о наследственных чертах, особенностях и развитии вида из поколения в поколение. Его мономером является нуклеотид. Что такое молекулы ДНК? Это главный компонент хромосом и содержит генетический код.

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Состав ДНК

Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.

Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.

Где находится­

Расположение внутри клетки зависит от особенностей вида. У одноклеточных ДНК находится в мембране. У остальных живых существ она располагается в ядре, пластидах и митохондриях. Если говорить о человеческой ДНК, то ее называют хромосомой. Правда, это не совсем так, ведь хромосомы – это комплекс хроматина и дезоксирибонуклеиновой кислоты.

Роль в клетке

Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты - топоизомеразы и хеликазы.

Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.

Как расшифровывается ДНК

Эта аббревиатура для биологии является привычной. Полное название ДНК- дезоксирибонуклеиновая кислота. Произнести такое не каждому под силу с первого раза, поэтому часто в речи расшифровка ДНК опускается. Встречается еще понятие РНК – рибонуклеиновая кислота, которая состоит из последовательностей аминокислот в белках. Они напрямую связаны, а РНК является второй по важности макромолекулой.

ДНК человека

Человеческие хромосомы внутри ядра разделены, что делает ДНК человека самым стабильным, полным носителем информации. Во время генетической рекомбинации спирали разделяются, происходит обмен участками, а затем связь восстанавливается. За счет повреждения ДНК образовываются новые комбинации и рисунки. Весь механизм способствует естественному отбору. До сих пор неизвестно, как долго она отвечает за передачу генома, и какова ее эволюция метаболизма.

Кто открыл­

Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.

План рождения человека готов тогда, когда половые клетки матери и отца сливаются в одно целое. Такое образование называется зиготой или оплодотворённой яйцеклеткой. Сам же план развития организма заключён в молекуле ДНК , находящейся в ядре этой единственной клетки. Именно в ней закодирован цвет волос, рост, форма носа и всё остальное, что делает личность индивидуальной.

Конечно, судьба человека зависит не только от молекулы, но и от многих других факторов. Но гены, заложенные при рождении, тоже во многом влияют на судьбоносный путь. А представляют они собой последовательность нуклеотидов.

При каждой делении клетки ДНК удваивается. Поэтому каждая клетка несёт в себе информацию о строении всего организма. Это как если бы при строительстве кирпичного здания на каждом кирпиче имелся архитектурный план всего сооружения. Посмотрел всего лишь на один кирпич и уже знаешь, частью какой строительной конструкции он является.

Подлинная структура молекулы ДНК была впервые продемонстрирована британским биологом Джоном Гёрдоном в 1962 году. Он брал ядро клетки из кишечника лягушки и с помощью микрохирургической техники пересаживал его в лягушачью икринку. При этом в этой икринке собственное ядро было предварительно убито ультрафиолетовым облучением.

Из гибридной икринки вырастала нормальная лягушка. При этом она была абсолютно идентична той, чьё клеточное ядро было взято. Так было положено начало эре клонирования. А первым успешным результатом клонирования среди млекопитающих стала овечка Долли. Она прожила 6 лет, а затем скончалась.

Впрочем, сама природа тоже создаёт двойников. Случается это тогда, когда после первого деления зиготы две новые клетки не остаются вместе, а расходятся в стороны, и из каждой получается свой организм. Так рождаются однояйцевые близнецы. Их молекулы ДНК абсолютно одинаковые, поэтому близнецы так похожи.

Своим внешним видом ДНК напоминает верёвочную лестницу, завитую в правую спираль. А состоит она из полимерных цепочек, каждая из которых формируется из звеньев 4-х типов: адениновое (А), гуаниновое (Г), тиминовое (Т) и цитозиновое (Ц).

Именно в их последовательности и заключена генетическая программа любого живого организма. На рисунке ниже, для примера, приведён нуклеотид Т. У него верхнее кольцо называется азотистым основанием, пятичленное кольцо внизу представляет собой сахар, а слева находится фосфатная группа.

На рисунке изображён тиминовый нуклеотид, входящий в состав ДНК. Остальные 3 нуклеотида имеют сходное строение, а различаются по азотистому основанию. Правое верхнее кольцо - азотистое основание. Нижнее пятичленное кольцо - сахар. Левая группа РО - фосфат

Размеры молекулы ДНК

Диаметр двойной спирали составляет 2 нм (нм - нанометр, равен 10 -9 метра). Расстояние между соседними парами оснований вдоль спирали составляет 0,34 нм. Полный оборот двойная спираль делает через 10 пар. А вот длина зависит от того организма, которому принадлежит молекула. У простейших вирусов имеется всего лишь несколько тысяч звеньев. У бактерий их несколько миллионов. А у высших организмов их миллиарды.

Если вытянуть в одну линию все ДНК, заключённые в одной клетке человека, то получится нить длиной примерно 2 м. Отсюда видно, что длина нити в миллиарды раз больше её толщины. Чтобы лучше представить себе размеры молекулы ДНК, можно вообразить, что её толщина равна 4 см. Такой нитью, взятой из одной человеческой клетки, можно опоясать земной шар по экватору. В таком масштабе человек будет соответствовать размерам Земли, а ядро клетки вырастит до размеров стадиона.

Верна ли модель Уотсона и Крика?

Рассматривая структуру молекулы ДНК, возникает вопрос, как она, имея такую огромную длину, располагается в ядре. Она должна лежать так, чтобы быть доступной по всей своей длине для РНК-полимеразы, которая считывает нужные гены.

А как осуществляется репликация? Ведь после удвоения две комплементарные цепи должны разойтись. Это довольно сложно, так как цепи первоначально закручены в спираль.

Такие вопросы изначально породили сомнения в верности модели Уотсона и Крика . А данная модель была слишком конкретна и просто дразнила специалистов своей незыблемостью. Поэтому все бросились искать изъяны и противоречия.

Одни специалисты предполагали, что если злополучная молекула состоит из 2-х полимерных цепочек, связанных слабыми нековалентными связями, то они должны расходиться при нагревании раствора, что можно легко проверить экспериментально.

Вторые специалисты заинтересовались азотистыми основаниями, которые образуют друг с другом водородные связи. Это можно проверить, измеряя спектры молекулы в инфракрасной области.

Третьи специалисты думали, что если внутри двойной спирали и впрямь запрятаны азотистые основания, то можно выяснить, действуют ли на молекулу те вещества, которые способны реагировать только с этими запрятанными группами.

Было поставлено множество опытов и к концу 50-х годов XX столетия стало ясно, что предложенная Уотсоном и Криком модель выдерживает все испытания. Попытки её опровержения потерпели неудачу .






































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи урока:

  • Образовательные :
    • сформировать знания о строении, свойствах, структуре молекул нуклеиновых кислот, как биополимеров, о принципе комплементарности в ДНК;
    • раскрыть роль нуклеиновых кислот в живой природе.
  • Развивающие :
    • развивать общеучебные умения (понимать и запоминать прочитанное, делать краткие записи, представление основных мыслей в виде схем, заполнение таблиц и др.);
    • развивать интеллектуальные умения (научить логически мыслить (поиск ответов на вопросы творческого характера), задавать вопросы и составлять суждения, сравнивать, находить взаимосвязи (состава, структуры и функций молекул ДНК и РНК);
    • развивать коммуникационные умения (умение понятно, кратко, точно, вежливо излагать свои мысли, задавать вопросы и отвечать на них, слушать и сосредотачивать внимание).
  • Воспитательные :
    • воспитывать у учащихся культуру общения и труда в ходе беседы, просмотра презентации и анимационного фильма, выполнения заданий;
    • воспитывать критическую и объективную самооценку знаний.

План урока:

I. Организационный момент (1-2 мин.)

II. Изучение новой темы (18-25 мин.)

  1. Мотивация к уроку (1-2 мин.)
  2. Нуклеиновые кислоты, состав, строение молекул. (Объяснение учителя в ходе показа слайдов, после показа фильмов)
  3. Принцип комплементарности в ДНК, самоудвоение ДНК. (Объяснение учителя в ходе показа слайдов)
  4. Сравнение ДНК и РНК. (Самостоятельная работа учащихся по учебнику).

III. Повторение и закрепление материала (10 мин.)

IV . Домашнее задание и подведение итогов (2-5 мин.)

Материалы и оборудование:

  • мультимедийный комплекс (компьютер, проектор, экран);
  • слайдовая презентация “Нуклеиновые кислоты”,
  • фрагменты видеофильма “Строение ядра”, о молекулах нуклеиновых кислот;
  • пространственная модель ДНК;
  • таблицы в электронном формате по теме;
  • анимационный фильм “Репликация ДНК”;
  • 3D –модель ДНК (электронное пособие “Биология. 6-9 класс “Кирилл и Мефодий”);

Этапы урока

Действия учителя

Действия учеников

I. Организационный момент (1-2 мин.). Организация начала урока, раздача тетрадей для проверочных работ, включение слайдовой презентации. Приветствие учителя, подготовка рабочих мест к уроку.
II. Изучение новой темы.

1. Мотивация к изучению темы (1-2 мин.)

Ознакомление с новой темой. Нацеливает учащихся на самостоятельное формулирование целей и задач урока.
Вопросы для мотивации к изучению темы: Если мы разрежем яблоко, извлечем семена и посадим их, из этих семян никогда не вырастет рябина. Почему?
При затруднении учеников через ряд вопросов подводит к понятию наследственности. А вот как сегодняшняя тема связана с наследственностью мы узнаем, изучив тему и в конце урока попытаемся ответить на заданный вопрос.
Записывают в тетради тему урока. Слушают учителя, участвуют в определении целей и задач урока, отвечают на вопросы.
2. Нуклеиновые кислоты, состав, структура и функции молекул. (5 мин.) Фрагмент о молекулах ДНК и РНК из видеофильма “Строение ядра”, модель ДНК. Показывает и объясняет состав и структуру молекул ДНК и РНК, мотивируя учеников к тому, что внимание и запоминание рассказа учителя поможет им при выполнении самостоятельного задания. После показа фильмов задает вопросы по содержанию фильма. По ходу объяснения делают записи в тетрадях.
После просмотра фильма отвечают на вопросы учителя.
3. Принцип комплементарности в ДНК, самоудвоение ДНК (5 мин.) Обращает внимание на рисунок ДНК и просит найти закономерность в расположении азотистых оснований. Объясняет понятие комплементарности и закрепляет знания на примере решения задачи.
Просмотр анимационного фильма “Репликация ДНК”.
Вопросы по фильму: Благодаря чему ДНК может самоудваиваться? Какое значение имеет репликация ДНК?
Внимательно слушают и записывают термины и участвуют в решении задачи.
В ходе повторного просмотра фильма при выключенном звуке комментируют процесс и отвечают на вопросы учителя.
4. Сравнение ДНК и РНК. (10 мин.) Объясняет правила заполнения таблицы. По ходу выполнения оказывает индивидуальную помощь и проверяет тесты по ключу.
Для снятия усталости во время выполнения задания включается легкая музыка.
Ззаполняют таблицу
“Сравнительная характеристика ДНК и РНК”. Работают индивидуально
III. Повторение и закрепление материала. (10 минут) Объяснение правил выполнения, ознакомление с критериями оценки. Сбор выполненных работ по истечении времени.
Ознакомление с правильными ответами и их пояснение.
Выполнение тестов, копирование ответов в рабочей тетради.
Самопроверка ответов по ключу
IV. Домашнее задание и подведение итогов (1-2 мин.) Объявляет домашнее задание и оценки за проверочный тест и за участие на уроке. Подводит итоги урока. Записывают домашнее задание, подают дневники для выставления отметок.

ХОД УРОКА

Объявление темы и цели урока. Мотивация учебной деятельности

– Из всего, что нас окружает, самой необъяснимой кажется жизнь. (Слайд 2) Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине ХХ века посчастливилось впервые узнать ответы. В сущности, ответы оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, мы узнаем сегодня на уроке. Центральное место в новой науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: “Что такое жизнь?”, занимают молекулы ДНК и РНК. Нуклеиновые кислоты – это тот инструмент, с помощью которого можно проникнуть в тайны природы.

– Сегодня на уроке мы познакомимся с видами нуклеиновых кислот, их структурой и биологической ролью, узнаем об истории открытия и изучения этих важных органических веществ и проведем подготовку к ЕГЭ, так как материал данного урока включен в задания экзаменационной работы по биологии.

План изучения нуклеиновых кислот (Слайд 4)
Строение. (Слайд 12)
История открытия и изучения. (Слайды 5-10)
Виды. (Слайд 11)

Нуклеиновые кислоты – это высокомолекулярные органические соединения. Они состоят из углерода, водорода, кислорода, фосфора, азота.
Нуклеиновые кислоты были открыты в 1869 г. швейцарским врачом Ф.Мишером в ядрах лейкоцитов, входящих в состав гноя. Впоследствии нуклеиновые кислоты были обнаружены во всех растительных и животных клетках, бактериях, протистах, грибах и вирусах.
Они играют центральную роль в хранении и передаче наследственной информации о свойствах организма.

В природе существует два вида нуклеиновых кислот: дезоксирибонуклеиновые, или ДНК, и рибонуклеиновые, или РНК. Название произошло от углевода, входящего в состав нуклеиновых кислот. Молекула ДНК содержит сахар дезоксирибозу, а молекула РНК – рибозу.
В настоящее время известны хромосомальная и внехромосомальная ДНК и рибосомальная, информационная и транспортная РНК, которые участвуют в синтезе белка. ДНК включает множество генов, определяющих различия в метаболизме. Например, ДНК бактериальной клетки кишечной палочки содержит несколько тысяч различных генов, а у животных и растений – много больше, причем каждый вид организмов имеет характерный только для него набор генов. Однако многие гены – общие для всех организмов, что подтверждает общность происхождения живых существ.

ДНК состоит из двух полинуклеотидных цепей, которые соединяются при водородных связей между азотистыми основаниями по принципу комплементарности – это принцип строгова соответствия. Цепи соединены антипаралельно,. Цепи ДНК в силу своей неравномерности распределения водородных связей, цепи закручиваются в спираль. Один виток содержит около 10 нуклеотидов. ДНК главным образом содержится в ядре клетки, но она так же входит в состав пластид и митохондрий. В ее структуре содержится вся генетическая информация. ДНК участвует в ее хранении и реализации. Колличкство ДНК в самотических клетках постоянна в пределах одного вида. ДНК обладает важным свойством репликацией. Репликация ДНК происходит в S период клеточного цикла в интерфазе, при подготовке клетки к делению. Под действием фермента ДНК-полимиразы, молекула ДНК раскручивается и водородные связи разрывыаются. Затем цпи расходятся и служат матрицами для синтеза длчерних цепей. При этом направление синтеза определяется С3 положением. Поэтому на одной зи цепей синтез происходит непрерывно – лидирующая цепь, а на другой цепи синтез происходит в виде фрагментов, которые потом сшиваются – отстающая цепь. Полинуклеотидная цепь ДНК состоит из нуклеотидов. А что является структурными компонентами нуклеотидов?

В состав любого нуклеотида ДНК входит одно из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц), а также сахар дезоксирибоза (C3H10O4) и остаток фосфорной кислоты.

Различаются ли нуклеотиды между собой?
Они отличаются только азотистыми основаниями, которые попарно имеют близкое химическое строение: Ц подобен Т (они относятся к пиримидиновым основаниям), А подобен Г (они относятся к пуриновым основаниям). А и Г по размерам несколько больше, чем Т и Ц. В ДНК входят нуклеотиды только четырех видов.
Как объединяются две полинуклеотидные цепи в единую молекулу ДНК?
Между азотистыми основаниями нуклеотидов разных цепей образуются водородные связи (между А и Т – две, а между Г и Ц – три). При этом А соединяется водородными связями только с Т, а Г – с Ц. В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых – числу цитидиловых. Эта закономерность получила название правила Чаргаффа. Благодаря этому свойству последовательность нуклеотидов в одной цепочке определяет их последовательность в другой, т.е. цепи ДНК являются как бы зеркальными отражениями друг друга. Такое избирательное соединение нуклеотидов называется комплементарностью, и это свойство лежит в основе самосборки новой полинуклеотидной цепи ДНК на базе исходной. Помимо водородных связей в стабилизации структуры двойной спирали участвуют и гидрофобные взаимодействия.

Задание (Слайд): постройте молекулу и-РНК, если участок молекулы ДНК имеет следующее строение:

А – А – Ц – Г – Г – Ц – Г – Т – А – Ц – Г – Т

У – У – Г – Ц – Ц – Г – Ц – А – У – Г – Ц – А – решение.

Необходимо напомнить, что вместо тимина в РНК содержится урацил (мнемоника: вместо Тигра-Альбиноса в РНК строится Утка-Альбинос)
Дополнительный вопрос: сколько аминокислотных звеньев в молекуле белка кодирует данный участок? Решение: Так как данный участок и-РНК состоит из 12 нуклеотидов, а одну аминокислоту кодирует триплет, т. е. тройка нуклеотидов, то число аминокислотных звеньев равно 12: 3 = 4

РНК - полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ:

1) азотистого основания,
2) пятиуглеродного моносахарида (пентозы) и
3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК:

1) информационная (матричная) РНК - иРНК (мРНК),
2) транспортная РНК - тРНК,
3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синт

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса - 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.

Функции тРНК:

1) транспорт аминокислот к месту синтеза белка, к рибосомам,
2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля.

Антикодон - три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса - 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы - органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках.

Функции рРНК:

1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом;
2) обеспечение взаимодействия рибосомы и тРНК;
3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания,
4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке.

Функции иРНК:

1) перенос генетической информации от ДНК к рибосомам,
2) матрица для синтеза молекулы белка,
3) определение аминокислотной последовательности первичной структуры белковой молекулы

Чем отличаются составы нуклеотидов ДНК и РНК?

РНК построена из тех же азотистых оснований, что и ДНК, но вместо тимина в ее состав входит урацил. Кроме того, углевод нуклеотидов РНК представлен рибозой.
Как происходит соединение нуклеотидов между собой в полинуклеотидной цепи ?
В полинуклеотидной цепи соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между дезоксирибозой (в молекуле ДНК) или рибозой (в молекуле РНК) одного нуклеотида и остатком фосфорной кислоты другого нуклеотида.
Чем объясняется огромное разнообразие генов в составе молекулы ДНК ?
Хотя ДНК содержит всего четыре типа разных нуклеотидов, благодаря различной последовательности их расположения в длинной цепочке достигается огромное разнообразие их сочетаний в молекуле.

Работа по вопросам: (и заполнение таблицы)

  1. Где в клетке находятся нуклеиновые кислоты?
  2. Какое строение имеют молекулы ДНК и РНК?
  3. Чем отличаются составы нуклеотидов ДНК и РНК?
  4. Какие углеводы входят в состав нуклеотидов ДНК и РНК?
  5. Какую роль выполняют эти НК?
  6. Каково их местоположение?

По вопросам составляется сравнительная характеристика.

Признаки

Местонахождение в клетке ядро, митохондрии, пластиды ядро, цитоплазма, рибосомы, митохондрии, пластиды
Роль в клетке химическая основа хромосомного генетического материала (генов);
матрица для синтеза ДНК;
матрица для синтеза РНК;
информация о структуре белка
иРНК передает код наследственной информации о первичной структуре белка;
рРНК входит в состав рибосом;
тРНК переносит аминокислоты к рибосомам;
митохондриальная и пластидная ДНК входят в состав этих органоидов
Строение двойная спираль: две комплементарные полинуклеотидные цепи одинарная полинуклеотидная цепь
Мономеры дезоксирибонуклеотиды рибонуклеотиды

III. Обобщение и корректировка знаний

– Проверка правильности заполнения обобщающей таблицы (Слайд 29)

IV. Итоговое тестирование (Слайды 32-33)

1. Молекулы ДНК представляют собой материальную основу наследственности, так как в них закодирована информация о структуре молекул

а – полисахаридов; б – белков; в – липидов; г – аминокислот.

2. В состав нуклеиновых кислот НЕ входят

а – азотистые основания; б – остатки пентоз; в – остатки фосфорной кислоты; г – аминокислоты.

3. Связь, возникающая между азотистыми основаниями двух комплементарных цепей ДНК,

а – ионная; б – пептидная; в – водородная; г – сложноэфирная.

4. Комплементарными основаниями НЕ является пара

а – тимин – аденин; б – цитозин – гуанин; в – цитозин – аденин; г – урацил – аденин.

5. В одном из генов ДНК 100 нуклеотидов с тимином, что составляет 10% от общего количества. Сколько нуклеотидов с гуанином?

а – 200; б – 400; в – 1000; г – 1800.

6. Молекулы РНК, в отличие от ДНК, содержат азотистое основание

а – урацил; б – аденин; в – гуанин; г – цитозин.

7. Благодаря репликации ДНК

а – формируется приспособленность организма к среде обитания;
б – у особей вида возникают модификации;
в – появляются новые комбинации генов;
г – наследственная информация в полном объеме передается от материнской клетки к дочерним во время митоза.

8. Молекулы и-РНК

а – служат матрицей для синтеза т-РНК;
б – служат матрицей для синтеза белка;
в – доставляют аминокислоты к рибосоме;
г – хранят наследственную информацию клетки.

9. Кодовому триплету ААТ в молекуле ДНК соответствует триплет в молекуле и-РНК

а – УУА; б – ТТА; в – ГГЦ; г – ЦЦА.

10. Белок состоит из 50 аминокислотных звеньев. Число нуклеотидов в гене, в котором зашифрована первичная структура этого белка, равно

а – 50; б – 100; в – 150; г – 250.

11. В рибосоме при биосинтезе белка располагаются два триплета и-РНК, к которым в соответствии с принципом комплементарности присоединяются антикодоны

а – т-РНК; б – р-РНК; в – ДНК; г – белка.

12. Какая последовательность правильно отражает путь реализации генетической информации?

а) ген – ДНК – признак – белок;
б) признак – белок – и-РНК – ген – ДНК;
в) и-РНК – ген – белок – признак;
г) ген – и-РНК – белок – признак.

13. Собственные ДНК и РНК в эукариотической клетке содержат а – рибосомы; б – лизосомы; в – вакуоли; г – митохондрии.

14. В состав хромосом входят

а – РНК и липиды; б – белки и ДНК; в – АТФ и т-РНК; г – АТФ и глюкоза.

15. Ученые, которые предположили и доказали, что молекула ДНК – двойная спираль, это

а – И. Ф. Мишер и О. Эвери;
б – М. Ниренберг и Дж. Матеи;
в – Дж. Д. Уотсон и Ф. Крик;
г – Р. Франклин и М. Уилкинс.

Правильные ответы (Слайд): 1б, 2г, 3в, 4в, 5б, 6а, 7г, 8б, 9а, 10в, 11а, 12г, 13г, 14б, 15в.

Выводы. Использование в оптимальном сочетании различных элементов ЦОР усиливает эффективность урока, позволяет обогатить багаж знаний обучающегося большим количеством готовых, строго отобранных, соответствующим образом организованных знаний, развивать интеллектуальные, творческие способности учащихся, их умение самостоятельно приобретать новые знания, работать с различными источниками информации. Применение различных методических приемов (например, отключить звук и попросить ученика прокомментировать процесс, остановить кадр и предложить продолжить дальнейшее протекание процесса, попросить объяснить процесс, применение приемов “вопрос-ответ”, последовательное выведение объектов на экран и др.)
позволяет интенсифицировать деятельность учителя и школьника; повысить качество обучения предмету; отразить существенные стороны биологических объектов, выдвинуть на передний план наиболее важные (с точки зрения учебных целей и задач) характеристики изучаемых объектов и явлений природы. Домашние задания различного характера (поиск информации в Интернете, подготовка сообщений и презентаций, разработка проектов и др.) повышают познавательный интерес к предмету, развивают интеллектуальные умения, способствуют углублению знаний.

Жизнь ДНК (дезоксирибонуклеиновых кислот)

Определение понятия "ДНК"

Ген - это совокупность сегментов ДНК, обуславливающих образование либо молекулы РНК, либо белкового продукта (Сингер М., Берг П., 1998).

У человека около 30000 генов. Во всём объёме ДНК структурные гены (т.е. те, которые кодируют белки, идущие на построение стуктур организма) занимают лишь 3-10%.

Наименьшая функциональная единица ДНК состоит из следующих элементов: структурный ген, регуляторные зоны, регуляторные гены.

Строение молекулы ДНК

Молекулы ДНК имеют вид длинных двойных цепей полимеров – полинуклеотидов, состоящих из мономеров – нуклеотидов. Двойная цепь закручена в спираль. Поэтому ДНК похожа на винтовую лестницу (посмотрите на рисунок вверху). Каждый нуклеотид включает одно из четырех азотистых оснований – аденин (А), гуанин (Г), цитозин (Ц) или тимин (Т), одну молекулу пентозы (пятиуглеродный сахар) и один остаток фосфорной кислоты. Обычно молекула ДНК состоит из двух комплементарных нитей, которые образуют двойную спираль. При этом аденин одной нити находится в паре с тимином другой (стабилизируется двумя водородными связями), а гуанин аналогично связан с цитозином (тремя водородными связями). Последовательность азотистых оснований в молекуле ДНК несет информацию, необходимую для синтеза белков. ДНК - очень длинные молекулы, состоящие из множества нуклеотидов. Например, геном человека состоит из 46 хромосом, основу которых составляют молекулы ДНК, которые в совокупности собраны примерно из 3 млрд нуклеотидны пар.

У эукариот генетический материал находится в ядре клетки в хромосомах. Хромосомы в активном состоянии существуют в виде хроматина. Хроматин содержит около 40% ДНК, 40% гистонов (щелочных белков), около 20% негистоновых хромосомных белков и немного РНК.

Видео: Строение хромосомы

ДНК мы можем отнести к "живым системам", к "живым молекулам" на том основании, что они лежат в основе жизни вообще, а также обладают рядом важнейших свойств живого, в частности, способностью к размножению. ДНК насктолько самостоятельны и самодостаточны, что способны существовать даже вне клетки - в виде вирусов. В своей жизни молекулы ДНК проходят жизненные этапы, напоминающие нам жизнь более сложных биологических систем - живых организмов. Это такие этапы как рождение, созревание, работа (деятельность) и "смерть".

Тема: Строение ДНК

Домашнее задание

  1. Знать и уметь писать структурные формулы нуклеотидов: А, Т, Г, Ц, У.
  2. Знать устройство молекул ДНК и их организацию в хромосомы.
  3. Знать способы связывания нуклеотидов в ДНК по вертикали и горизонтали. Понятие о 3"-5" связях.
  4. Уметь пользоваться таблицей генетического кода для построения молекул пептидов на основе участка ДНК размером от 12 и более нуклеотидов.

Видео: Хромосомы, митоз, репликация

Этапы жизни молекулы ДНК

Рождение (репликация) - созревание (хромосомы) - работа (транскрипция) - управление (регуляция) - видоизменение (мутация) - "смерть"

1. Репликация ДНК - рождение новой дочерней нити ДНК на родительской нити.
2. Созревание ДНК - формирование хромосомы.
3. Транскрипция ДНК - работа ДНК в виде матричного синтеза на ней РНК.
4. Регуляция транскрипции - управление деятельностью ДНК по транскрипции.
5. Репарация ДНК - восстановление повреждённых участков.
6. Изменения структуры ДНК - мутации, транспозоны.
7. Деградация ДНК - разрушение при каждом цикле репликации.

1. Рождение - репликация

Репликация ДНК проходит очень просто, на счёт "раз, два, три", то есть в три этапа: 1) инициация, 2) элонгация, 3) терминация.

1. Инициация - начинание

Мишень для запуска репликации

Репликация огромной молекулы ДНК начинается с возникновения репликативной точки. Эта точка имеет специфическую последовательность богатую парами А-Т. Такие учкастки в ДНК как раз и являются мишенями для белков, инициирующих репликацию. Именно к ним присоединяются специальные распознающие белки, которые обеспечивают присоединение ферментов репликации хеликазы и топоизомеразы (гиразы) и таким образом запускают процесс репликации. Хеликаза расплетает ДНК на две цепи. Образуется репликативная вилка. Молекула ДНК жестко закреплена на ядерном матриксе и не может свободно вращаться при расплетании какого-либо участка. Это блокирует продвижение хеликазы по цепи. Топоизомераза надрезает нити ДНК и снимает структурное напряжение.
В одной репликативной вилке действуют две хеликазы, которые движутся в противоположных направлениях. Разделенные цепи фиксируются ДНК- связывающими белками. Участки формирования репликативной вилки называются «точками ori» (origin - начало). У эукариот одновременно образуется тысячи таких вилок, что обеспечивает высокую скорость репликации.

2. Элонгация - продолжение (удлиннение)

Наращивание дочерних цепей ДНК на двух родительских цепях происходит неодинаково. ДНК- полимераза III прокариот и δ- или α-ДНК-полимеразы эукариот могут осуществлять синтез новой цепи ДНК лишь в направлении 5’>3’, т.к. могут присоединить новый нуклеотид только к углероду в положении 3’, но не в положении 5’.

Цепь с такой направленностью называется лидирующей . На ней синтез дочерней нити ДНК идёт непрерывно. ДНК-полимераза III или δ-полимераза непрерывно присоединяют к ней комплементарные нуклеотиды.

Цепь с полярностью 3’>5’ является отстающей и достраивается по частям (также в направлении 5’>3’). α-ДНК-полимераза (или ДНК-полимераза III) синтезирует на этой цепи короткие участки - фрагменты Оказаки.

Синтез фрагментов Оказаки и лидирующей цепи начинается с образования РНК-праймеров (затравок ) длиной 10-15 рибонуклеотидов ферментом праймазой (РНК-полимеразой). Ни одна из ДНК-полимераз не способна начать синтез ДНК с нуля, а может лишь достраивать существующую цепь. Параллельно с образованием лидирующей цепи или фрагментов Оказаки происходит удаление рибонуклеотидов из праймеров и замена их нуклеотидами ДНК. Замена рибонуклеиновых участков (праймеров) на участки ДНК происходит с помощью β-ДНК-полимеразы, которая имеет как экзонуклеазную, так и полимеразную активность.

Таким образом, репликация невозможна без частичной временной транскрипции.

Скорость репликации (элонгации) ДНК составляет около 45000 нуклеотидов в минуту, таким образом, родительская вилка расплетается со скоростью 4500 об/мин. Это сопоставимо, например, со скоростью вращения охлаждающего вентилятора в компьютере (1300-4800 об/мин).

3. Терминация - завершение (окончание)

Завершение репликации происходит тогда, когда пробелы между фрагментами Оказаки заполнятся нуклеотидами (при участии ДНК-лигазы) с образованием двух непрерывных двойных цепей ДНК и когда встретятся две репликативные вилки. Затем происходит закручивание синтезированных ДНК с образованием суперспиралей.

Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и действием ДНК-полимераз, которые обладают кроме полимеразной, еще и экзонуклеазной активностью и способны распознавать и исправлять ошибки. Если включается некомплементарный нуклеотид, то фермент делает шаг назад, отщепляет его и продолжает полимеразную реакцию. Поэтому процесс репликации является высокоточным.

После завершения репликации происходит метилирование ДНК в участках –GАТС- по аденину (с образованием N-метиладенина) и остаткам цитозина с образованием 5-метилцитозина. Метилирование не нарушает комплементарности цепей и является необходимым для формирования структуры хромосом и регуляции транскрипции генов.

У прокариот, таких как бактерии, ДНК способна реплицироваться, не распрямляясь в линейную молекулу, то есть оставаясь в характерной для неё кольцевой форме.

Видео: П

2. Созревание - формирование хромосомы и хроматина

3. Работа - транскрипция

Видео: Блокировка работы гена

4. Управление - регуляция

5. Восстановление (починка) - репарация

6. Видоизменение - мутация .

7. "Смерть" - деградация при репликации.