Апоптоз - запрограммированная гибель клетки. Апоптоз и его значение В чем биологический смысл апоптоза

Определение апоптоза. Апоптоз – феномен наследственно запрограммированной смерти клеток. Каждая клетка при своем рождении как бы запрограммирована на самоуничтожение. Условие ее жизни – блокирование этой суицидальной программы.

Апоптоз реализуется для клеток:

Старых, отживших свой срок;

Клеток с нарушениями дифференцировки;

Клеток с нарушениями генетического аппарата;

Клеток, пораженных вирусами.

Морфологические признаки апоптоза.

Сморщивание клетки;

Конденсация и фрагментация ядра;

Разрушение цитоскелета;

Буллезное выпячивание клеточной мембраны.

Особенность апоптоза – апоптоз не вызывает воспаления в окружающих тканях.Причина - сохранность мембраны и → изоляция повреждающих факторов цитоплазмы до полного завершения процесса (О 2 - , Н 2 О 2 , лизосомальные ферменты). Эта особенность – важная позитивная черта апоптоза, в отличие от некроза. При некрозе мембрана повреждается (или разрывается) сразу же. Поэтому при некрозе содержимое цитоплазмы высвобождается (О 2 - , Н 2 О 2 , лизосомальные ферменты). Возникает повреждение соседних клеток и воспалительный процесс. Важная черта апоптоза - удаление умирающих клеток происходит без развития воспаления.

Процесс апоптоза - может быть разделен на 2 (две) фазы:

1. Формирование и проведение апоптических сигналов – фаза принятия решения.

2. Демонтаж клеточных структур – эффекторная фаза.

1-я фаза – принятия решения (=формирование и принятие апоптических сигналов). Это фаза принятия стимулов для апоптоза. В зависимости от характера стимулов, может быть 2 (два) типа сигнальных путей:

1) повреждение ДНК в результате радиации, действия токсических агентов, глюкокортикоидов и т.д.

2) активация рецепторов «региона клеточной смерти» . Рецепторы «региона клеточной смерти» - это группа рецепторов на мембранах любых клеток, которые воспринимают проапоптические стимулы. Если количество и активность таких рецепторов увеличивается, то увеличивается количество апоптически гибнущих клеток. К рецепторам «региона клеточной смерти» относятся: а) TNF-R (связывается с фактором некроза опухолей и активирует апоптоз); б) Fas-R (к); в) CD45-R (связывается с антителами и активирует апоптоз).

В зависимости от типа сигнала, существует 2 (два) основных способа апоптоза: а) в результате повреждения ДНК;

б) в результате самостоятельной активации рецепторов «региона клеточной смерти» без повреждения ДНК.

2-я фаза – эффекторная (=демонтаж клеточных структур. Основные фигуранты эффекторной фазы:

Цистеиновые протеазы (каспазы);

Эндонуклеазы;

Сериновые и лизосомальные протеазы;

Протеазы, активированные Ca ++ (кальпейн)

Но! Среди них основные эффекторы демонтажа клеточных структур – каспазы.

Классификация каспаз - 3 (три) группы:

Эффекторные каспазы - каспазы 3, 6, 7.

Индукторы активации эффекторных каспаз – каспазы 2, 8, 9, 10. = активаторы цитокинов – каспазы 1, 4, 5, 13.

Эффекторные каспазы – каспазы 3, 6, 7. Это непосредственные исполнители апоптоза. Эти каспазы находятся в клетке в неактивном состоянии. Активированные эффекторные каспазы начинают цепь протеолитических событий, целью которых является «демонтаж» клетки. Их активируют индукторы активации эффекторных каспаз.

Индукторы активации эффекторных каспаз – каспазы 2, 8, 9, 10. Основные индукторы – каспазы 8 и 9 . Они активируют эффекторные каспазы. Механизм – расщепление аспарагиновых оснований с последующей димеризацией активных субъединиц. Эти каспазы при обычном состоянии в клетках неактивны, существуют в форме прокаспаз.

Активация тех или иных индукторов зависит от типа сигнального пути:

1. При повреждении ДНК задействован сигнальный путь № 1, активируется каспаза № 9.

2. При активации рецепторов клеточной смерти задействован сигнальный путь № 2, активируется каспаза № 8.

Сигнальный путь № 1 (связан с повреждением ДНК)

Повреждение ДНК

Активация гена р53 и продукция соответствующего белка

Активация проапоптических генов семейства BCL-2 (BAX и BID)

Образование белков этих генов

Активация каспазы 9

Активация каспазы 3

Сигнальный путь № 2

(связан с активацией «региона клеточной смерти»)

Лиганд + рецепторы «региона клеточной смерти»

Активация каспазы № 8

Независимая активация каспазы № 3

Активация других каспаз и протеаз

Регуляция апоптоза. Исследования последних лет привели к созданию модели апоптоза. По этой модели каждая клетка при своем рождении запрограммирована на самоуничтожение. Следовательно, условием ее жизни является блокирование этой суицидальной программы. Основная задача регуляции апоптоза – держать эффекторные каспазы в неактивном состоянии, но быстро переводить их в активную форму в ответ на минимальное действие соответствующих индукторов.

Отсюда, понятие ингибиторов и активаторов апоптоза.

Ингибиторы апоптоза (=антиапоптические факторы). К наиболее серьезным ингибиторам апоптоза относятся ростовые факторы. Другие: нейтральные аминокислоты, цинк, эстрогены, андрогены, некоторые белки.

Пример: Белки семейства IAP – подавляют активность каспаз 3 и 9. Запомнить: один из этих белков (Survin) обнаружен в опухолевых клетках. С ним связывают резистентность опухолевых клеток к химиотерапии

Активаторы апоптоза (=проапоптические факторы). Это проапоптические гены и их продукция: а) гены семейства BCL-2 (BAX и BID); б) гены Rb и P53 (запускают апоптоз, если клетка задержана механизмом checkpoint.

Резюме. Патогенез многих заболеваний, в том числе и опухолевых, связан со снижением способности клеток подвергаться апоптозу. Отсюда накопление поврежденных клеток и формирование опухоли.

ПАТОФИЗИОЛОГИЯ КЛЕТОЧНОГО ДЕЛЕНИЯ

Основное отличие деления здоровой и опухолевой клетки:

Деление здоровой клетки регулируется паракринным и эндокринным способом. Клетка подчиняется этим сигналам и делится только в том случае, если организм нуждается в образовании новых клеток данного вида.

Деление опухолевой клетки регулируется аутокринным способом. Опухолевая клетка сама образует митогенные стимуляторы и сама же делится под их влиянием. Она не отвечает на паракринные и эндокринные стимулы.

Существует 2(два) механизма опухолевой трансформации клеток:

1. Активация онкогенов.

2. Инактивация генов-супрессоров.

АКТИВАЦИЯ ОНКОГЕНОВ

Прежде всего 2 (два) главных понятия: = протоонкогены;

Онкогены.

Протоонкогены – это нормальные, неповрежденные гены, которые контролируют деление здоровой клетки.

К протоонкогенам относятся гены, контролирующие образование и работу:

1. Ростовых факторов.

2. Мембранных рецепторов к ростовым факторам, например тирозинкиназных рецепторов.

3. Ras-белков.

4. MAP-киназ, участниц МАР-киназного каскада.

5. Транскрипционных факторов AP-1.

Онкогены – поврежденные протоонкогены. Процесс повреждения протоонкогена и трансформация его в онкоген называется активация онкогена.

Механизмы активации онкогена.

1. Включение (вставка) промотора. Промотор – это участок ДНК, с которым связывается РНК-полимераза протоонкогена. Необходимое условие – промотор должен находится в непосредственной близости с протоонкогеном. Отсюда варианты: а) промотор - ДНК-копия онкорнавирусов; б) «прыгающие гены» - участки ДНК, способные перемещаться и встраиваться в разные участки генома клетки.

2. Амплификация – увеличение числа протоонкогенов или появление копий протоонкогенов. Протоонкогены в норме обладают небольшой активностью. При увеличении числа или появлении копий их общая активность значительно возрастает и это может привести к опухолевой трансформации клетки.

3. Транслокация протоонкогенов. Это перемещение протоонкогена в локус с функционирующим промотором.

4. Мутации протоонкогенов.

Продукция онкогенов. Онкогены образуют свои белки. Эти белки называются «онкобелки».

Синтез онкобелков называется «экспрессия активных клеточных онкогенов».

Онкобелки – в основе своей есть аналоги белков протоонкогенов: ростовых факторов, Ras-белков, МАР-киназ, транскрипционных факторов. Но есть количественные и качественные отличия онкогенов от белков протоонкогенов.

Отличия онкобелков от нормальной продукции протоонкогенов:

1. Увеличение синтеза онкобелков по сравнению с синтезом белков протоонкогенов.

2. Онкобелки имеют структурные отличия от белков протоонкогенов.

Механизм действия онкобелков.

1. Онкобелки соединяются с рецепторами для факторов роста и образуют комплексы, постоянно генерирующие сигналы к делению клетки.

2. Онкобелки повышают чувствительность рецепторов к факторам роста или понижают чувствительность к ингибиторам роста.

3. Онкобелки могут сами действовать как факторы роста.

ИНАКТИВАЦИЯ ГЕНОВ-СУПРЕССОРОВ

Гены-супрессоры: Rb и р53.

Их продукция – соответствующие белки.

Инактивация генов-супрессоров (наследственное или приобретенное) ведет к пропуску в митоз клеток с поврежденной ДНК, размножению и накоплению этих клеток. Это – возможная причина формирования опухоли.

ОПУХОЛЕВЫЙ РОСТ: ОПРЕДЕЛЕНИЕ, ПРИЧИНЫ УВЕЛИЧЕНИЯ КОЛИЧЕСТВА ЗЛОКАЧЕСТВЕННЫХ ЗАБОЛЕВАНИЙ

Опухоль – патологическое разрастание, отличающееся от других патологических разрастаний наследственно закрепленной способностью к неограниченному неконтролируемому росту.

Другие патологические разрастания – гиперплазия, гипертрофия, регенерация после повреждения.

Причины увеличения количества злокачественных заболеваний среди населения:

1. Увеличение продолжительности жизни.

2. Улучшение качества диагностики → увеличение выявляемости онкологических заболеваний.

3. Ухудшение экологической обстановки, увеличение содержания канцерогенных факторов в окружающей среде.

ДОБРОКАЧЕСТВЕННЫЕ И ЗЛОКАЧЕСТВЕННЫЕ ОПУХОЛИ

Единой классификации опухолей до сих пор не создано. Причина:

1. Большое разнообразие признаков, характерных для различных опухолей.

2. Недостаточность знания их этиологии и патогенеза.

В основе современных классификаций - главные морфологические и клинические признаки опухолей.

На основе клинической характеристики все опухоли делят на доброкачественные и злокачественные.

Доброкачественные опухоли:

1. Клетки опухоли морфологически идентичны или похожи на нормальные клетки-предшественники.

2. Степень дифференцировки опухолевых клеток – достаточно высокая.

3. Скорость роста – медленная, в течение многих лет.

4. Характер роста – экспансивный, т.е. во время роста опухоли соседние ткани раздвигаются, иногда сдавливаются, но обычно не повреждаются.

5. Отграниченность от окружающих тканей – четкая.

6. Способность к метастазированию – отсутствует.

7. Отсутствие выраженного неблагоприятного воздействия на организм. Исключение: опухоли, расположенные вблизи жизненно важных центров. Пример: опухоль головного мозга, сдавливающая нервные центры.

Злокачественные опухоли.

1. Клетки опухоли морфологически отличаются от нормальной клетки-предшественницы (часто до неузнаваемости).

2. Степень дифференцировки опухолевых клеток – низкая.

3. Скорость роста – быстрая.

4. Характер роста – инвазивный, т.е. опухоль прорастает в соседние структуры. Способствующие факторы:

Приобретение опухолевыми клетками способности отшнуровываться от опухолевого узла и активно перемещаться;

Способность опухолевых клеток продуцировать «канцероагрессины». Это белки, которые проникают в окружающие нормальные ткани и стимулируют хемотаксис для опухолевых клеток.

Уменьшение сил клеточной адгезии. Это облегчает отшнуровку опухолевых клеток от первичного узла и их последующее движение.

Уменьшение контактного торможения.

5. Отграниченность от окружающих тканей – нет.

6. Способность к метастазированию – выражена.

7. Воздействие на организм – неблагоприятное, генерализованное.

Апоптоз – это программированная клеточная смерть (инициирующаяся под действием вне- или внутриклеточных факторов) в развитии которой активную роль принимают специальные и генетически запрограммированные внутриклеточные механизмы . Он, в отличие от некроза активный процесс, требующий определенных энергозатрат . Первоначально пытались разграничить понятия «программированная клеточная гибель » и «апоптоз »: к первому термину относили устранение клеток в эмбриогенезе, а ко второму – программированную смерть только зрелых дифференцированных клеток. В настоящее время выяснилось, что никакой целесообразности в этом нет (механизмы развития клеточной гибели одинаковы) и два понятия превратились в синонимы, хотя это объединение и не бесспорно.

Прежде чем приступить к изложению материала о роли апоптоза для жизнедеятельности клетки (и организма) в норме и патологии, мы рассмотрим механизм апоптоза. Их реализацию можно представить в виде поэтапного развития следующих стадий:

1 стадия стадия инициации (индукции) .

В зависимости от происхождения сигнала, стимулирующего апоптоз, различают:

    внутриклеточные стимулы апоптоза . Среди них к наиболее известным относят – разные виды облучения, избыток Н + , оксид азота, свободные радикалы кислорода и липидов, гипертермия и др. Все они могут вызывать различные повреждения хромосом (разрывы ДНК, нарушения ее конформации др.) и внутриклеточных мембран (особенно митохондрий). То есть в данном случае поводом для апоптоза служит «неудовлетворительное состояние самой клетки» (Мушкамбиров Н.П., Кузнецов С.Л., 2003). Причем, повреждение структур клеток должно быть достаточно сильным, но не разрушительным. У клетки должны сохраниться энергетические и материальные ресурсы для активации генов апоптоза и его эффекторных механизмов. Внутриклеточный путь стимуляции программированной смерти клетки можно обозначить как «апоптоз изнутри »;

    трансмембранные стимулы апоптоза , т.е., в этом случае он активируется внешней «сигнализацией», которая передается через мембранные или (реже) внутриклеточные рецепторы. Клетка может быть вполне жизнеспособной, но, с позиции целостного организма или «ошибочной» стимуляции апоптоза, она должна погибнуть. Этот вариант апоптоза получил название «апоптоз по команде ».

Трансмембранные стимулы подразделяются на:

    «отрицательные » сигналы. Для нормальной жизнедеятельности клетки, регуляции ее деления и размножения необходимо воздействие на нее через рецепторы различных БАВ: факторов роста, цитокинов, гормонов. Среди прочих эффектов, они подавляют механизмы клеточной гибели. И естественно, дефицит или отсутствие данных БАВ активирует механизмы программированной смерти клетки;

    «положительные » сигналы. Сигнальные молекулы, такие как ФНОα, глюкокортикоиды, некоторые антигены, адгезивные белки и др., после взаимодействия с клеточными рецепторами могут запускать программу апоптоза.

На клеточных мембранах находится группа рецепторов, в задачу которых передача сигнала к развитию апоптоза является основной, возможно даже единственной функцией. Это, например, белки группы DR (death receptos – «рецепторы смерти »): DR 3 , DR 4 , DR 5 . Наиболее хорошо изучен Fas-рецептор, появляющийся на поверхности клеток (гепатоцитах) спонтанно или под влиянием активации (зрелые лимфоциты). Fas-рецептор при взаимодействии с Fas-рецептором (лигандом) Т-киллера запускает программу смерти клетки мишени. Однако, взаимодействие Fas-рецептора с Fas-лигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера (см. нижеигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера ()ожно000000000000000000000000000).

Следует помнить, что некоторые сигнальные молекулы апоптоза, в зависимости от ситуации могут наоборот, блокировать развитие программированной смерти клеток. Амбивалентность (двойственное проявление противоположных качеств) характерна для ФНО, ИЛ-2, интерферона γ и др.

На мембранах эритроцитов, тромбоцитов, лейкоцитов, а так же клеток легкого и кожи обнаружены особые антигены-маркеры . На них синтезируются физиологические аутоантитела , и они, выполняя роль опсонинов , способствуют фагоцитозу этих клеток, т.е. гибель клеток происходит путемаутофагоцитоза . Выяснилось, что антигены-маркеры появляются на поверхности «старых» (прошедших свой путь онтогенетического развития) и поврежденных клетках, молодые и неповрежденные клетки их не имеют. Данные антигены получили название «антигены-маркеры стареющих и поврежденных клеток» или «белок третьей полосы». Появление белка третьей полосы контролируется геномом клетки. Следовательно, аутофагоцитоз можно рассматривать, как вариант запрограммированной гибели клеток .

    Смешанные сигналы. Это сочетанное воздействие сигналов первой и второй группы. Например, апоптоз происходит с лимфоцитами, активированных митогоном (положительный сигнал), но не вступивших в контакт с АГ (отрицательный сигнал).

2 стадия стадия программирования (контроля и интеграции механизмов апоптоза).

Для этой стадии характерно два, диаметрально противоположных процесса, наблюдающихся после инициации. Происходит либо:

    реализация пускового сигнала к апоптозу через активацию его программы (эффекторами являются каспазы и эндонуклеазы);

    блокируется эффект пускового сигнала апоптоза.

Различают два основных, но не исключающих друг друга, варианта исполнения стадии программирования (рис. 14):

Рис. 14. Каспазный каскад и его мишени

R– мембранный рецептор; К – каспазы;AIF– митохондриальная протеаза; Цит. С – цитохром с;Apaf-1 – цитоплазматический белок;IAPs– ингибиторы каспаз

1. Прямая передача сигнала (прямой путь активации эффекторных механизмов апоптоза минуя геном клетки) реализуется через:

    адапторные белки. Например, так осуществляется запуск апоптоза Т-киллером. Он активирует каспазу-8 (адапторный белок). Аналогично может действовать и ФНО;

    цитохром С и протеазу ΑIF (митохондриальная протеаза). Они выходят из поврежденной митохондрии и активируют каспазу-9;

    гранзимы. Т-киллеры синтезируют белок перфорин, который образует каналы в плазмолемме клетки-мишени. Через эти каналы в клетку проникают протеолитические ферменты гранзимы , выделяемые все тем же Т-киллером и они запускают каскад каспазной сети.

2. Опосредованная передача сигнала. Она реализуется с помощью генома клетки путем:

    репрессии генов, контролирующих синтез белков-ингибиторов апоптоза (гены Bcl-2, Bcl-XL и др). Белки Bcl-2 в нормальных клетках входят в состав мембраны митохондрий и закрывают каналы по которым из этих органоидов выходят цитохром С и протеаза AIF;

    экспрессии, активации генов, контролирующих синтез белков-активаторов апоптоза (гены Bax, Bad, Bak, Rb, P 53 и др.). Они, в свою очередь активируют каспазы (к-8, к-9).

На рис. 14 представлена примерная схема каспазного принципа активации каспаз. Видно, что откуда бы не запускался каскад, его узловым моментом является каспаза 3. Она активируется и каспазой 8 и 9. Всего в семействе каспаз – более 10 ферментов. Локализуются в цитоплазме клетки в неактивном состоянии (прокаспазы). Положение всех каспаз в данном каскаде до конца не выяснено, поэтому на схеме ряд из них отсутствует. Как только активируются каспазы 3,7,6 (возможно и их другие типы) наступает 3 стадия апоптоза.

3 стадия стадия реализация программы (исполнительная, эффекторная).

Непосредственными исполнителями («палачами» клетки) являются выше указанные каспазы и эндонуклеазы. Местом приложения их действия (протеолиза) служат (рис. 14):

    цитоплазматические белки – белки цитоскелета (фодрин и актин). Гидролизом фодрина объясняют изменение поверхности клетки – «гофрирование» плазмолеммы (появление на ней впячиваний и выступов);

    белки некоторых цитоплазматических регуляторных ферментов: фосфолипазы А 2 , протеинкиназы С и др.;

    ядерные белки. Протеолиз ядерных белков занимает основное место в развитии апоптоза. Разрушаются структурные белки, белки ферментов репликации и репарации (ДНК-протеинкиназы и др.), регуляторные белки (рRb и др.), белки-ингибиторов эндонуклеаз.

Иннактивация последней группы – белков ингибиторов эндонуклеаз приводит к активации эндонуклеаз, второму « орудию » апоптоза . В настоящее время эндонуклеазы и в частности, Са 2+ , Мg 2+ -зависимая эндонуклеаза , рассматривается как центральный фермент программируемой смерти клетки. Она расщепляет ДНК не в случайных местах, а только в линкерных участках (соединительные участки между нуклеосомами). Поэтому хроматин не лизируется, а только фрагментируется, что определяет отличительную, структурную черту апоптоза.

Вследствие разрушения белка и хроматина в клетке формируются и от нее отпочковываются различные фрагменты – апоптозные тельца. В них находятся остатки цитоплазмы, органелл, хроматина и др.

4 стадия стадия удаления апоптозных телец (фрагментов клетки).

На поверхности апоптозных телец экспрессируются лиганды, они распознаются рецепторами фагоцитов. Процесс обнаружения, поглощения и метаболизирования фрагментов погибшей клетки происходит сравнительно быстро. Это способствует избежать попадания содержания погибшей клетки в окружающую среду и тем самым, как отмечено выше, воспалительный процесс не развивается. Клетка уходит из жизни «спокойно», не беспокоя «соседей» («тихий суицид»).

Программированная клеточная гибель имеет важное значение для многих физиологических процессов . С апоптозом связаны:

    поддержание нормальных процессов морфогенеза – запрограммированная смерть клеток в процессе эмбриогенеза (имплантации, органогенеза) и метаморфоза;

    поддержание клеточного гомеостаза (в том числе ликвидация клеток с генетическими нарушениями и инфицированных вирусами). Апоптозом объясняется физиологическая инволюция и уравновешивание митозов в зрелых тканях и органах. Например, гибель клеток в активно пролиферирующих и самообновляющихся популяциях – эпителиоцитов кишечника, зрелых лейкоцитов, эритроцитов. Гормонально-зависимая инволюция – гибель эндометрия в конце менструального цикла;

    селекция разновидностей клеток внутри популяции. Например, формирование антигенспецифической составляющей иммунной системы и управление реализацией ее эффекторных механизмов. С помощью апоптоза происходит выбраковка ненужных и опасных для организма клонов лимфоцитов (аутоагрессивных). Сравнительно недавно (Griffith T.S., 1997) показали значение программированной гибели клеток в защите «иммунологически привилегированных» зон (внутренние среды глаза и семенников). При прохождении гисто-гематических барьеров данных зон (что случается редко), эффекторные Т-лимфоциты гибнут (см. выше). Включение механизмов их смерти обеспечивается при взаимодействии Fas-лиганда барьерных клеток с Fas-рецепторами Т-лимфоцита, тем самым предотвращается развитие аутоагрессии.

Роль апоптоза в патологии и виды различных заболеваний связанных с нарушением апоптоза представлены в виде схемы (рис. 15) и таблицы 1.

Конечно, значение апоптоза в патологии меньше чем некроза (возможно, это связано с недостаточностью таких знаний). Однако, проблема его в патологии имеет и несколько иной характер: она оценивается по степени выраженности апоптоза — усиление или ослабление при тех или иных болезнях.

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Что такое апоптоз?

Апоптоз – физиологическая смерть клетки, представляющая собой своеобразную генетически запрограммированную самоликвидацию.

Термин "апоптоз" в переводе с греческого означает "опадающий". Авторы термина дали такое название процессу запрограммированной смерти клеток потому, что именно с ним связано осеннее опадание увядших листьев. Кроме того, само название характеризует процесс как физиологический, постепенный и абсолютно безболезненный.

У животных в качестве наиболее яркого примера апоптоза, как правило, приводят исчезновение хвоста у лягушки во время метаморфозы из головастика во взрослую особь.

По мере взросления лягушонка хвост полностью исчезает, поскольку его клетки подвергаются постепенному апоптозу – запрограммированной смерти, и поглощению деструктированных элементов другими клетками.

Явление генетически запрограммированной гибели клеток встречается у всех эукариотов (организмов, клетки которых имеют ядро). Прокариоты же (бактерии) имеют своеобразный аналог апоптоза. Можно сказать, что данный феномен характерен для всего живого, за исключением таких особых доклеточных форм жизни, как вирусы .

Апоптозу могут подвергаться как отдельные клетки (как правило, дефектные), так и целые конгломераты. Последнее особенно характерно для эмбриогенеза. К примеру, опыты исследователей доказали, что благодаря апоптозу во время эмбриогенеза исчезают перепонки между пальцами на лапках у цыплят.

Ученые утверждают, что у человека такие врожденные аномалии, как сросшиеся пальцы на руках и ногах, также возникают вследствие нарушения нормального апоптоза на ранних стадиях эмбриогенеза.

История открытия теории апоптоза

Изучение механизмов и значения генетически программируемой клеточной смерти началось еще в шестидесятых годах прошлого века. Ученых заинтересовал тот факт, что клеточный состав большинства органов на протяжении жизни организма практически одинаков, а вот жизненный цикл различных типов клеток значительно отличается. При этом происходит постоянная замена многих клеток.

Таким образом, относительное постоянство клеточного состава всех организмов поддерживается динамическим равновесием двух противоположных процессов – клеточной пролиферации (деление и рост) и физиологического отмирания отживших клеток.

Авторство термина принадлежит британским ученым – Дж. Керру, Э. Уайли и А. Керри, которые впервые выдвинули и обосновали концепцию о принципиальном различии физиологической смерти клеток (апоптоз), и их патологической гибели (некроз).

В 2002 году ученые из кембриджской лаборатории, биологи С. Бреннер, Дж. Салстон и Р. Хорвиц, получили Нобелевскую Премию по физиологии и медицине за раскрытие основных механизмов генетической регуляции развития органов и исследования программируемой клеточной смерти.

Сегодня теории апоптоза посвящены десятки тысяч научных работ, раскрывающие основные механизмы его развития на физиологическом, генетическом и биохимическом уровнях. Ведется активный поиск его регуляторов.

Особенно большой интерес представляют исследования, дающие возможность практического применения регуляции апоптоза при лечении онкологических, аутоиммунных и нейродистрофических заболеваний.

Механизм

Механизм развития апоптоза на сегодняшний день до конца не изучен. Доказано, что процесс может индуцироваться малыми концентрациями большинства веществ, вызывающих некроз.

Однако в большинстве случаев генетически запрограммированная гибель клеток происходит при поступлении сигналов от молекул – клеточных регуляторов, таких как:

  • гормоны;
  • антигены;
  • моноклональные антитела и др.
Сигналы к апоптозу воспринимаются специализированными клеточными рецепторами, которые запускают последовательные этапы внутриклеточных сложных биохимических процессов.

Характерно, что сигналом к развитию апоптоза может быть как наличие активирующих веществ, так и отсутствие некоторых соединений, препятствующих развитию запрограммированной смерти клетки.

Ответ клетки на сигнал зависит не только от его силы, но и от общего исходного состояния клетки, морфологических особенностей ее дифференцировки, стадии жизненного цикла.

Одним из базовых механизмов апоптоза на стадии его реализации является деградация ДНК, в результате чего происходит фрагментация ядра. В ответ на повреждение ДНК запускаются защитные реакции, направленные на ее восстановление.

Неудачные попытки восстановить ДНК приводят к полному энергетическому истощению клетки, что и становится непосредственной причинной ее гибели.

Механизм апоптоза - видео

Фазы и стадии

Различают три физиологические фазы апоптоза:
1. Сигнальная (активация специализированных рецепторов).
2. Эффекторная (формирование из разнородных эффекторных сигналов единого пути апоптоза, и запуск каскада сложных биохимических реакций).
3. Дегидратационная (букв. обезвоживание – гибель клетки).

Кроме того, морфологически выделяют две стадии процесса:
1. Первая стадия – преапоптоз . На этой стадии происходит уменьшение размеров клетки за счет ее сморщивания, возникают обратимые изменения в ядре (уплотнение хроматина и скопление его по периферии ядра). В случае воздействия некоторых специфических регуляторов апоптоз может быть остановлен, и клетка возобновит свою нормальную жизнедеятельность.


2. Вторая стадия – собственно апоптоз. Внутри клетки происходят грубые изменения во всех ее органеллах, однако наиболее значимые превращения развиваются в ядре и на поверхности ее внешней мембраны. Клеточная мембрана теряет ворсинки и обычную складчатость, на ее поверхности формируются пузырьки – клетка как бы кипит, и в результате распадается на так называемые апоптические тельца, поглощаемые тканевыми макрофагами и/или соседними клетками.

Морфологически определяемый процесс апоптоза занимает, как правило, от одного до трех часов.

Некроз и апоптоз клетки. Сходство и различие

Терминами некроз и апоптоз обозначают полное прекращение жизнедеятельности клетки. Однако апоптозом обозначают физиологическое отмирание, а некрозом – ее патологическую гибель.

Апоптоз является генетически запрограммированным прекращением существования, то есть по определению имеет внутреннюю причину развития, в то время как некроз происходит в результате воздействия сверхсильных внешних, по отношению к клетке, факторов:

  • недостаток питательных веществ;
  • отравление токсинами и т.п.
Для апоптоза характерна постепенность и стадийность процесса, в то время как некроз наступает более остро, и четко различить стадии практически невозможно.

Кроме того, гибель клетки при процессах некроза и апоптоза отличается морфологически – первый характеризуется её набуханием, а при втором происходит сморщивание клетки, и уплотнение ее мембран.

Во время апоптоза происходит гибель клеточных органелл, однако мембрана сохраняется в целостности, так что образуются, так называемые, апоптические тельца, которые впоследствии поглощаются специализированными клетками – макрофагами или клетками-соседями.

При некрозе происходит разрыв клеточной мембраны, и содержимое клетки выходит наружу. Начинается воспалительная реакция.

Если некрозу подверглось достаточно большое количество клеток, воспаление проявляется известными с древности характерными клиническими симптомами , такими как:

  • боль;
  • покраснение (расширение сосудов в области поражения);
  • припухлость (воспалительный отек);
  • местное, а иногда и общее повышение температуры ;
  • более или менее выраженное нарушение функции органа, в котором произошел некроз.

Биологическое значение

Биологическое значение апоптоза заключается в следующем:
1. Осуществление нормального развития организма в период эмбриогенеза.
2. Предотвращение размножения мутировавших клеток.

3. Регуляция деятельности иммунной системы.
4. Предотвращение преждевременного старения организма.

Данный процесс играет ведущую роль в эмбриогенезе, поскольку многие органы и ткани претерпевают значительные трансформации во время эмбрионального развития. Многие врожденные дефекты возникают вследствие недостаточной активности апоптоза.

Как запрограммированная самоликвидация дефектных клеток, данный процесс является мощной природной защитой против онкологических заболеваний. Так, к примеру, вирус папилломы человека блокирует клеточные рецепторы, ответственные за апоптоз и, таким образом, приводит к развитию рака шейки матки и некоторых других органов.

Благодаря данному процессу происходит физиологическая регуляция клонов Т-лимфоцитов , ответственных за клеточный иммунитет организма. Клетки, неспособные распознавать белки собственного организма (а таких в общей сложности созревает около 97%), подвергаются апоптозу.

Недостаточность апоптоза приводит к тяжелым аутоиммунным заболеваниям, в то время как его усиление возможно при иммунодефицитных состояниях. К примеру, тяжесть течения СПИДа коррелирует с усилением данного процесса у Т-лимфоцитов.

Кроме того, этот механизм имеет большое значение для функционирования нервной системы: он ответственен за нормальное формирование нейронов, и он же может вызывать раннее разрушение нервных клеток при болезни Альцгеймера .

Одна из теорий старения организма – теория апоптоза. Уже доказано, что именно он лежит в основе преждевременного старения тканей, где гибель клеток остается невосполнимой (нервная ткань, клетки миокарда). С другой стороны, недостаточный апоптоз может способствовать накоплению в организме стареющих клеток, которые в норме физиологически отмирают, и заменяются новыми (раннее старение соединительной ткани).

Роль теории апоптоза в медицине

Роль теории апоптоза в медицине заключается в возможности поиска путей регуляции этого процесса для лечения и профилактики многих патологических состояний, вызванных ослаблением или, наоборот, усилением апопоптоза.

Исследования ведутся одновременно во многих направлениях. Прежде всего, следует отметить научные изыскания в такой значимой области медицины, как онкология . Поскольку опухолевый рост вызван дефектом генетически запрограммированной гибели мутировавших клеток, изучается возможность специфической регуляции апоптоза, с повышением его активности в опухолевых клетках.

Действие некоторых химиотерапевтических препаратов, широко применяемых в онкологии, основано на усилении процессов апоптоза. Так как опухолевые клетки более склонны к данному процессу, подбирается доза вещества, достаточная для гибели патологических клеток, но относительно безвредная для нормальных.

Также чрезвычайно важны для медицины исследования, изучающие роль апоптоза в дегенерации ткани сердечной мышцы под влиянием недостаточности кровообращения. Группа китайских ученых (Lv X, Wan J, Yang J, Cheng H, Li Y, Ao Y, Peng R) опубликовала новые экспериментальные данные, которые доказывают возможность искусственного снижения апоптоза в кардиомиоцитах при введении определенных веществ-ингибиторов.

Если теоретические исследования на лабораторных объектах удастся применить в клинической практике – это будет большой шаг вперед в борьбе с ишемической болезнью сердца . Данная патология занимает первые позиции среди причин смерти во всех высокоразвитых странах, так что переход от теории к практике трудно было бы переоценить.

Еще одно весьма перспективное направление – разработка методов регуляции данного процесса для замедления старения организма. Теоретические исследования ведутся в направлении создания программы, сочетающей повышение активности апоптоза стареющих клеток, и одновременного усиления пролиферации молодых клеточных элементов. Здесь достигнуты определенные успехи на теоретическом уровне, однако до перехода от теории к практическим решениям еще далеко.

Кроме того, масштабные научные исследования проводятся в следующих направлениях:

  • аллергология;
  • иммунология;
  • терапия инфекционных заболеваний;
  • трансплантология;
Таким образом, в недалеком будущем мы станем свидетелями внедрения в практику принципиально новых медицинских препаратов, побеждающих многие заболевания.

Запрограммированная гибель клеток – неотъемлемый процесс жизнедеятельности любого организма. При нарушении этого процесса развивается ряд тяжелых заболеваний.

Что такое апоптоз?

Апоптоз – клеточная смерть, наступающая в результате запрограммированных процессов, протекающих в клетке на молекулярном уровне. При апоптозе клетка делится на несколько частей, окруженных клеточной мембраной, после чего клеточные фрагменты в течение нескольких минут (обычно, до 90 минут) перевариваются специальными клетками макрофагами.

Явление запрограммированной гибели клеток свойственно всем живым существам, в том числе и человеку. Ежедневно в организме человека погибает несколько десятков миллиардов клеток. Уничтоженные клетки в дальнейшем замещаются новыми клетками, образованными за счет клеточного деления (митоза).

Какова роль апоптоза?

Самоликвидация ненужных организму клеток – чрезвычайно важный процесс для нормальной жизнедеятельности любого организма. Одной из главных функций апоптоза явялется поддержание постоянства клеточной популяции. При образовании новой клеточной популяции (например, некоторых иммунных клеток) нужно учесть, что ряд клеток будут обязательно дефектными. То есть организму необходимо провести клеточную селекцию для сохранения только тез клеток, которые в полной мере будут справляться со своими функциями. В остальных же, дефектных клетках, запускает программа самоуничтожения.

Апоптоз также играет важную роль при заражении инфекционными агентами, в частности вирусными. При попадании в клетку вирус начинает усиленно размножаться, после чего клетка разрывается и миллионы вирусных частиц атакуют уже другие клетки. В ходе эволюции живые организмы научились бороться с таким явлением. Так ряд вирусов вызывают в клетке ряд изменений, которые воспринимаются, как сигнал к самоликвидации. Таким образом, уничтожив инфицированную клетку, организм не дает возможности распространиться вирусу.

Когда апоптоз не работает

В регуляции апоптоза задействовано множество молекулярных процессов, слаженное действие которых приводит к гибели «не угодных» организму клеток. Однако в силу определенных причин, до конца еще не ясных, происходит нарушение апоптозной регуляции. К сбою в системе может привести недостаточный синтез апоптозных белков и ферментов, а также воздействие специфических веществ, приводящих к снижению апоптозной активности клетки.

На сегодняшний день известно, что одним из регуляторов апоптоза выступает белок р53. При наличии в клетке ряда дефектов, в частности поломок генетического материала, белок р53 запускает цепочку молекулярных процессов, приводящих к развитию апоптоза. Мутация белка р53 приводит к невозможности выполнения его основной функции – запуска клеточной гибели.

Предотвратить запрограммированную гибель клеток могут и вирусы. Например, в генетическом материале некоторых вирусов могут быть закодированы специфические белки, тормозящие апоптоз клетки. В других случаях вирусная инфекция стимулирует выработку противоапоптозных белков самой клетки. Таким образом, вирус выключает программу апоптоза клетки и может бесконтрольно размножаться.

Выделяют несколько вариантов нарушения апоптоза:

  • Чрезмерный апоптоз – патологические явление, приводящее к чрезмерной гибели клеточной популяции. Наблюдается такое явление при ВИЧ-инфекции, некоторых формах гепатита, хронической ишемии миокарда, нейродегенеративных и других заболеваниях.
  • Недостаточный апоптоз, при котором количество умирающих клеток явно меньше, чем количество вновь образованных.
  • Незавершенный апоптоз, при котором не происходит уничтожения апоптозных фрагментов клетками иммунной системы.
К чему приводит нарушение апоптоза?

Активированный протеин C может препятствовать апоптозу

Регуляция процессов программируемой гибели клеток может стать ключом к созданию нового эффективного средства для лечения инсульта.

Американские ученые успешно испытали на мышах вещество, уже нашедшее применение в

На сегодняшний день известно, что нарушение регуляции апоптоза может привести к ряду иммунологических и опухолевых заболеваний. В нормальных условиях в организме человека проходит жесткая селекция новообразованных иммунных клеток, так как некоторые из них могут обладать реактивностью по отношению к собственным клеткам организма. Если нарушается процесс самоуничтожения таких иммунных клеток, то развиваются заболевания.

Нарушение регуляции апоптоза клеточных популяций приводит к развитию ряда опухолевых процессов. В частности, доказан тот факт, что мутация белка р53 или нарушение его синтеза в организме может привести к развитию гормон-зависимой карциномы молочной железы, яичников и предстательной железы. Подобные нарушения также выявлены и при развитии лимфом.

Возможность воздействия на апоптозную систему явялется одним из направлений в поиске лекарственных средств от рака. Однако в некоторых случаях стимуляция апоптозной активности, наоборот – губительна для организма. В этой связи ученые и медики активно изучают природу данного явления, надеясь в будущем получить инструмент, с помощью которого можно было бы управлять апоптозом.

Под термином «апоптоз» следует понимать физиологический процесс гибели клеток, который запускается в ответ на действие физиологических сигналов или обеспечивается включением особой генетической программы. Морфологически этот процесс характеризуется уплотнением хроматина, разделением ДНК на фрагменты и изменением структуры клеточной мембраны. В итоге клетка разрушается и фагоцитируется без признаков воспаления, что практически не влияет на окружающие ткани.

Биологическая роль

Запрограммированная гибель клетки чрезвычайно важна для нормального функционирования организма.

Запрограммированная гибель клетки играет важную роль в нормальной жизнедеятельности живых организмов, она обеспечивает:

  • развитие в период эмбриогенеза;
  • регуляцию численности клеток и их состава в зрелом организме;
  • дифференцировку клеток;
  • уничтожение старых клеток, прекращающих выполнять свои функции;
  • гормональные перестройки;
  • подавление опухолевого роста;
  • выбраковку клеток с генетическими дефектами;
  • элиминацию чужеродных агентов (вирусов, бактерий, грибов и др.).

Нарушение регуляции гибели клеток приводит к развитию:

  • вирусных инфекций;
  • нейродегенеративных заболеваний ( , );
  • патологии крови ( , ).

Следует отметить, что при некоторых из них функция апоптоза снижена, а при других, наоборот, повышена.

  • Считается, что подавление апоптоза имеет большое значение для прогрессирования опухолей. Раковые клетки могут приобретать устойчивость к нему за счет усиленной экспрессии антиапоптотических факторов или в результате мутаций в генах.
  • Снижение апоптоза наблюдается при аутоиммунных процессах, когда аутоагрессивные Т-клетки не уничтожаются иммунной системой. Это приводит к повреждению собственных тканей организма.
  • Усиление апоптоза также негативно сказывается на состоянии здоровья человека. С этим может быть связана усиленная гибель костномозговых клеток-предшественниц красного и белого кроветворного ростка, следствием которой является апластическая анемия.

Таким образом апоптоз выступает общим механизмом гибели клеток, как при физиологических, так и при патологических процессах.

Механизмы развития

Запрограммированная гибель клеток проходит с последовательной сменой 3 стадий:

  1. Индукторная.
  2. Эффекторная.
  3. Деградация.

На первой стадии происходит рецепция сигнала и начальные этапы его передачи. Это осуществляется с помощью рецепторного механизма под действием внешних факторов или путем внутренней активации.

Рецепторы, запускающие апоптоз, получили название рецепторов смерти. Они имеют внутри себя специальные домены, взаимодействие с которыми индуцирует особые внутриклеточные сигналы.

Внутренний путь активации этого процесса связан с изменениями, происходящими в митохондриях. Он чувствителен к недостатку факторов роста, гормонов или цитокинов. Также влиять на него может:

  • гипоксия;
  • переохлаждение;
  • инвазия вирусов;
  • облучение;
  • свободные радикалы.

Все эти факторы способны вызывать перестройку внутренней мембраны митохондрий, в результате которой открываются поры и высвобождаются проапоптотические вещества. По своей структуре это белки, которые запускают каспазозависимый путь апоптоза и индуцируют разделение ДНК на фрагменты с конденсацией периферических участков хроматина.

В эффекторную стадию происходит активация главных ферментов апоптоза – каспаз. Они обладают протеолитической активностью и расщепляют белки по аспарагиновому остатку. В результате их деятельности в клетке происходит массивное разрушение белка и развиваются необратимые изменения.

На последней стадии реализуются основные механизмы гибели клетки. При этом активируется эндонуклеазы, деятельность которых приводит к деградации ДНК. После этого происходит реорганизация цитоскелета и преобразование клетки в апоптотические тельца, на поверхности которых появляются маркеры для фагоцитоза. На последнем этапе такие клетки поглощаются макрофагами.

Регуляция апоптоза


Нарушение апоптоза - один из факторов, повышающих риск развития СПИДа.

Каждый из механизмов апоптоза имеет свою регуляцию:

  • Митохондриальный путь регулируется белками из семейства Bcl-2. Они влияют на проницаемость мембраны митохондрий и могут ослаблять или стимулировать апоптоз. Это осуществляется путем контроля высвобождения цитохрома С.
  • Регуляция рецепторного механизма гибели клетки происходит путем контроля активности каспаз.

Апоптоз позволяет организму поддерживать физиологическое равновесие и противостоять различным внешним воздействиям. Так, каждый день в организме человека в результате запрограммированной гибели отмирают десятки миллиардов клеток, однако эти потери быстро компенсируются за счет клеточной пролиферации. Суммарная масса клеток, которые ежегодно подвергаются разрушению при апоптозе, равна массе тела человека.